Publications

2 Results

Search results

Jump to search filters

Ab initio property predictions of quinary solid solutions using small binary cells

Computational Materials Science

Rothchild, Eric; Asta, Mark D.; Chrzan, Daryl C.; Kuner, Matthew C.

The Set of Small Ordered Structures (SSOS) approach is an ab initio technique for modelling random solid solutions in which many small structures are averaged so that their correlation functions match those of a desired composition. SSOS has been shown to be effective in reducing the cost of density functional theory calculations relative to other well-known techniques such as cluster expansions and special quasirandom structures for modelling solid solutions. Here in this work, we demonstrate that SSOS’s can be constructed using cells with only a subset of elements while still accurately modelling multi-component systems. Specifically, we show that small binary cells can effectively model two quinary high entropy alloys – NbTaTiHfZr and MoNbTaVW – accurately capturing properties such as formation energy, lattice parameters, elastic constants, and root-mean-square atomic displacements. Overall, this insight is useful for those looking to construct databases of such small structures for predicting the properties of multi-component solid solutions, as it greatly decreases the number of structures that needs to be considered.

More Details

Polymorphic structure of $\langle a \rangle$-type screw dislocation cores in $\alpha$-Ti

Physical Review Materials

Chrzan, Daryl C.; Jany, David; Rothchild, Eric

The dislocation core structure has a significant role in determining the dominant slip plane and the magnitude of the Peierls stress for a dislocation. An important challenge when studying dislocation cores is to determine the stable and metastable core morphologies, and then relate these structures to the dynamics of the dislocations. ere this study introduces a method for identifying core structures that are metastable at zero temperature. Application of this method to $\langle$a$\rangle$-type screw dislocations in α-Ti (as described using an empirical potential) reveals a multitude of (meta)stable nonplanar cores. Molecular dynamics studies show how the competing metastable core structures determine the properties of the dislocations at temperature and under a range of non-Schmid stresses.

More Details
2 Results
2 Results