Publications

Results 151–175 of 444

Search results

Jump to search filters

Splitting of magnetic dipole modes in anisotropic TiO 2 micro-spheres: Splitting of magnetic dipole modes in anisotropic TiO 2 micro-spheres

Laser & Photonics Reviews

Khromova, Irina; Kuzel, Petr; Brener, Igal B.; Reno, J.L.; Chung Seu, U-Chan; Elissalde, Catherine; Maglione, Mario; Mounaix, Patrick; Mitrofanov, Oleg

Monocrystalline titanium dioxide (TiO2) micro-spheres support two orthogonal magnetic dipole modes at terahertz (THz) frequencies due to strong dielectric anisotropy. For the first time, we experimentally detected the splitting of the first Mie mode in spheres of radii inline imagem through near-field time-domain THz spectroscopy. By fitting the Fano lineshape model to the experimentally obtained spectra of the electric field detected by the sub-wavelength aperture probe, we found that the magnetic dipole resonances in TiO2 spheres have narrow linewidths of only tens of gigahertz. Lastly, anisotropic TiO2 micro-resonators can be used to enhance the interplay of magnetic and electric dipole resonances in the emerging THz all-dielectric metamaterial technology.

More Details

III-V semiconductor nanoresonators-a new strategy for passive, active, and nonlinear all-dielectric metamaterials

Advanced Optical Materials

Liu, Sheng L.; Brener, Igal B.; Sinclair, Michael B.; Keeler, Gordon A.; Reno, J.L.

We demonstrate 2D and multilayer dielectric metamaterials made from III–V semiconductors using a monolithic fabrication process. The resulting structures could be used to recompress chirped femtosecond optical pulses and in a variety of other optical applications requiring low loss. Moreover, these III–V all-dielectric metamaterials could enable novel active applications such as efficient nonlinear frequency converters, light emitters, detectors, and modulators.

More Details

Next Generation Photovoltaic Technologies For High-Performance Remote Power Generation (Final Report)

Lentine, Anthony L.; Nielson, Greg N.; Riley, Daniel R.; Okandan, M.; Sweatt, W.C.; Jared, Bradley H.; Resnick, Paul J.; Kim, B.; Kratochvil, Jay; Anderson, B.J.; Cruz-Campa, J.L.; Gupta, Vipin P.; Tauke-Pedretti, Anna; Cederberg, J.G.; Paap, Scott M.; Sanchez, Carlos A.; Nordquist, Christopher N.; Saavedra, Michael P.; Ballance, Mark H.; Nguyen, J.; Alford, Charles A.; Nelson, John S.; Lavin, Judith M.; Clews, P.; Pluym, Tammy P.; Wierer, J.; Wang, George T.; Biefeld, Robert M.; Luk, Ting S.; Brener, Igal B.; Granata, J.; Aguirre, Brandon A.; Haney, Mike; Agrawal, Gautam; Gu, Tian

A unique, micro-scale architecture is proposed to create a novel hybrid concentrated photovoltaic system. Micro-scale (sub-millimeter wide), multi-junction cells are attached to a large-area silicon cell backplane (several inches wide) that can optimally collect both direct and diffuse light. By using multi- junction III-V cells, we can get the highest possible efficiency of the direct light input. In addition, by collecting the diffuse light in the large-area silicon cell, we can produce power on cloudy days when the concentrating cells would have minimal output. Through the use of micro-scale cells and lenses, the overall assembly will provide higher efficiency than conventional concentrators and flat plates, while keeping the form factor of a flat plate module. This report describes the hybrid concept, the design of a prototype, including the PV cells and optics, and the experimental results.

More Details

Near-Field Spectroscopy and Imaging of Subwavelength Plasmonic Terahertz Resonators

IEEE Transactions on Terahertz Science and Technology

Mitrofanov, Oleg; Khromova, Irina; Siday, Thomas; Thompson, Robert J.; Ponomarev, Andrey N.; Brener, Igal B.; Reno, J.L.

We present the temporal evolution of the terahertz (THz) field leading to the excitation of plasmonic resonances in carbon microfibers. The field evolution is mapped in space and time for the 3/2 wavelength resonance using a subwavelength aperture THz near-field probe with an embedded THz photoconductive detector. The excitation of surface waves at the fiber tips leads to the formation of a standing wave along the fiber. Local THz time-domain spectroscopy at one of the standing wave crests shows a clear third-order resonance peak at 1.65 THz, well described by the Lorentz model. This application of the subwavelength aperture THz near-field microscopy for mode mapping and local spectroscopy demonstrates the potential of near-field methods for studies of subwavelength plasmonic THz resonators.

More Details

Multipolar Coupling in Hybrid Metal-Dielectric Metasurfaces

ACS Photonics

Brener, Igal B.; Guo, Rui; Rusak, Evgenia; Staude, Isabelle; Dominguez, Jason J.; Decker, Manuel; Author, No; Rockstuhl, Carsten; Neshev, Dragomir N.; Kivshar, Yuri S.

We study functional hybrid metasurfaces consisting of metal-dielectric nanoantennas that direct light from an incident plane wave or from localized light sources into a preferential direction. The directionality is obtained by carefully balancing the multipolar contributions to the scattering response from the constituents of the metasurface. The hybrid nanoantennas are composed of a plasmonic gold nanorod acting as a feed element and a silicon nanodisk acting as a director element. In order to experimentally realize this design, we have developed a two-step electron-beam lithography process in combination with a precision alignment step. The optical response of the fabricated sample is measured and reveals distinct signatures of coupling between the plasmonic and the dielectric nanoantenna elements that ultimately leads to unidirectional radiation of light.

More Details

Intrinsic polarization control in rectangular GaN nanowire lasers

Nanoscale

Li, Changyi; Liu, Sheng L.; Luk, Ting S.; Figiel, J.J.; Brener, Igal B.; Brueck, S.R.J.; Wang, George T.

We demonstrate intrinsic, linearly polarized lasing from single GaN nanowires using cross-sectional shape control. A two-step top-down fabrication approach was employed to create straight nanowires with controllable rectangular cross-sections. A clear lasing threshold of 444 kW cm-2 and a narrow spectral line width of 0.16 nm were observed under optical pumping at room temperature, indicating the onset of lasing. The polarization was along the short dimension (y-direction) of the nanowire due to the higher transverse confinement factors for y-polarized transverse modes resulting from the rectangular nanowire cross-section. The results show that cross-sectioned shape control can enable inherent control over the polarization of nanowire lasers without additional environment requirements, such as placement onto lossy substrates.

More Details

Photoconductive Terahertz Near-Field Detector with a Hybrid Nanoantenna Array Cavity

ACS Photonics

Mitrofanov, Oleg; Brener, Igal B.; Luk, Ting S.; Reno, J.L.

Nanoscale structuring of optical materials leads to modification of their properties and can be used for improving efficiencies of photonic devices and for enabling new functionalities. In ultrafast optoelectronic switches for generation and detection of terahertz (THz) radiation, incorporation of nanostructures allows us to overcome inherent limitations of photoconductive materials. We propose and demonstrate a nanostructured photoconductive THz detector for sampling highly localized THz fields, down to the level of λ/150. The nanostructure that consists of an array of optical nanoantennas and a distributed Bragg reflector forms a hybrid cavity, which traps optical gate pulses within the photoconductive layer. The effect of photon trapping is observed as enhanced absorption at a designed wavelength. This optically thin photoconductive THz detector allows us to detect highly confined evanescent THz fields coupled through a deeply subwavelength aperture as small as 2 μm (λ/150 at 1 THz). By monolithically integrating the THz detector with apertures ranging from 2 to 5 μm we realize higher spatial resolution and higher sensitivity in aperture-type THz near-field microscopy and THz time-domain spectroscopy.

More Details

An Efficient Holographic Huygens? Metasurface based on Dielectric Resonant Meta-Atoms

OPtica

Brener, Igal B.; Chong, Katie; Wang, Lei; Staude, Isabelle; Decker, Manuel; Neshev, Dragomir; Kivshar, Yuri; James, Anthony R.; Dominguez, Jason J.; Subramania, Ganapathi S.; Liu, Sheng L.

Subwavelength-thin metasurfaces have shown great promises for the control of optical wavefronts, thus opening new pathways for the development of efficient flat optics. In particular, Huygens’ metasurfaces based on all-dielectric resonant meta-atoms have already shown a huge potential for practical applications with their polarization insensitivity and high transmittance efficiency. Here, we experimentally demonstrate a holographic Huygens’ metasurface based on dielectric resonant meta-atoms capable of complex wavefront control at telecom wavelengths. Our metasurface produces a hologram image in the far-field with 82% transmittance efficiency and 40% imaging efficiency. Such efficient complex wavefront control shows that Huygens’ metasurfaces based on resonant dielectric meta-atoms are a big step towards practical applications of metasurfaces in wavefront design related technologies, including computer-generated holograms, ultra-thin optics, security and data storage devices.

More Details

Terahertz near-field imaging of surface plasmon waves in graphene structures

Solid State Communications

Mitrofanov, O.; Yu, W.; Thompson, R.J.; Jiang, Y.; Greenberg, Z.J.; Palmer, J.; Brener, Igal B.; Pan, Wei P.; Berger, C.; De Heer, W.A.; Jiang, Z.

We introduce a near-field scanning probe terahertz (THz) microscopy technique for probing surface plasmon waves on graphene. Based on THz time-domain spectroscopy method, this near-field imaging approach is well suited for studying the excitation and evolution of THz plasmon waves on graphene as well as for mapping of graphene properties at THz frequencies on the sub-wavelength scale.

More Details
Results 151–175 of 444
Results 151–175 of 444