Characterization Studies of Bentonite Barrier Interactions: Results From FEBEX-DP Bentonite Samples
Abstract not provided.
Abstract not provided.
This interim report is an update of the report Jove Colon et al. (2019; M4SF-19SN010301091) describing international collaboration activities pertaining to FEBEX-DP and DECOVALEX19 Task C projects. Although work on these two international repository science activities is no longer continuing by the international partners, investigations on the collected data and samples is still ongoing. Descriptions of these underground research laboratory (URL) R&D activities are given in Jové Colón et al. (2018; 2019) but will repeated here for completeness. The 2019 status of work conducted at Sandia National Laboratories (SNL) on these two activities is summarized along with other international collaboration activities in Birkholzer et al. (2019).
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The following interim report describes updates to ongoing international collaboration activities pertaining the FEBEX-DP and DECOVALEX Task C projects. Descriptions of these underground research laboratory (URL) activities are given in Jové Coke et al. (2018) but will repeated here for completeness. The 2018 status of work conducted at Sandia National Laboratories (SNL) on these two activities has been described in Jové Coke et al. (2018) and were summarized along with other international collaboration activities in Birkholzer et al. (2018).
Abstract not provided.
Abstract not provided.
Nature Communications
The limited flux and selectivities of current carbon dioxide membranes and the high costs associated with conventional absorption-based CO2 sequestration call for alternative CO2 separation approaches. Here we describe an enzymatically active, ultra-thin, biomimetic membrane enabling CO2 capture and separation under ambient pressure and temperature conditions. The membrane comprises a ~18-nm-thick close-packed array of 8 nm diameter hydrophilic pores that stabilize water by capillary condensation and precisely accommodate the metalloenzyme carbonic anhydrase (CA). CA catalyzes the rapid interconversion of CO2 and water into carbonic acid. By minimizing diffusional constraints, stabilizing and concentrating CA within the nanopore array to a concentration 10× greater than achievable in solution, our enzymatic liquid membrane separates CO2 at room temperature and atmospheric pressure at a rate of 2600 GPU with CO2/N2 and CO2/H2 selectivities as high as 788 and 1500, respectively, the highest combined flux and selectivity yet reported for ambient condition operation.
Scientific Reports
Nanoparticles have shown great promise in improving cancer treatment efficacy while reducing toxicity and treatment side effects. Predicting the treatment outcome for nanoparticle systems by measuring nanoparticle biodistribution has been challenging due to the commonly unmatched, heterogeneous distribution of nanoparticles relative to free drug distribution. We here present a proof-of-concept study that uses mathematical modeling together with experimentation to address this challenge. Individual mice with 4T1 breast cancer were treated with either nanoparticle-delivered or free doxorubicin, with results demonstrating improved cancer kill efficacy of doxorubicin loaded nanoparticles in comparison to free doxorubicin. We then developed a mathematical theory to render model predictions from measured nanoparticle biodistribution, as determined using graphite furnace atomic absorption. Model analysis finds that treatment efficacy increased exponentially with increased nanoparticle accumulation within the tumor, emphasizing the significance of developing new ways to optimize the delivery efficiency of nanoparticles to the tumor microenvironment.
Abstract not provided.
Nature Communications
The progress of nanoparticle (NP)-based drug delivery has been hindered by an inability to establish structure-activity relationships in vivo. Here, using stable, monosized, radiolabeled, mesoporous silica nanoparticles (MSNs), we apply an integrated SPECT/CT imaging and mathematical modeling approach to understand the combined effects of MSN size, surface chemistry and routes of administration on biodistribution and clearance kinetics in healthy rats. We show that increased particle size from ~32- to ~142-nm results in a monotonic decrease in systemic bioavailability, irrespective of route of administration, with corresponding accumulation in liver and spleen. Cationic MSNs with surface exposed amines (PEI) have reduced circulation, compared to MSNs of identical size and charge but with shielded amines (QA), due to rapid sequestration into liver and spleen. However, QA show greater total excretion than PEI and their size-matched neutral counterparts (TMS). Overall, we provide important predictive functional correlations to support the rational design of nanomedicines.
Abstract not provided.
Advanced Functional Materials
A novel strategy for the versatile functionalization of the external surface of metal-organic frameworks (MOFs) has been developed based on the direct coordination of a phenolic-inspired lipid molecule DPGG (1,2-dipalmitoyl-sn-glycero-3-galloyl) with metal nodes/sites surrounding MOF surface. X-ray diffraction and Argon sorption analysis prove that the modified MOF particles retain their structural integrity and porosity after surface modification. Density functional theory calculations reveal that strong chelation strength between the metal sites and the galloyl head group of DPGG is the basic prerequisite for successful coating. Due to the pH-responsive nature of metal-phenol complexation, the modification process is reversible by simple washing in weak acidic water, showing an excellent regeneration ability for water-stable MOFs. Moreover, the colloidal stability of the modified MOFs in the nonpolar solvent allows them to be further organized into 2 dimensional MOF or MOF/polymer monolayers by evaporation-induced interfacial assembly conducted on an air/water interface. Lastly, the easy fusion of a second functional layer onto DPGG-modified MOF cores, enabled a series of MOF-based functional nanoarchitectures, such as MOFs encapsulated within hybrid supported lipid bilayers (so-called protocells), polyhedral core-shell structures, hybrid lipid-modified-plasmonic vesicles and multicomponent supraparticles with target functionalities, to be generated. for a wide range of applications.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Sustainable Energy & Fuels
Abstract not provided.
Propellants, Explosives, Pyrotechnics
It has long been observed that oxidation processes in metals tend to follow a parabolic rate law associated with the growth of a surface oxide layer. Here we observe that for certain titanium powders, the expected parabolic law (∝ t1/2) is recovered, yet for others, the exponent differs significantly. One explanation for this non-parabolic, anomalous diffusion arises from fractal geometry. Theo retical considerations indicate that the time response of diffusion-limited processes in an object closely follow a power-law in time (tn) with n=(E−D)/2, where E is the object's Euclidean dimension and D is its boundary's Hausdorff dimension. Non-integer, (fractal) values of D will result in n≠1/2. Finite element simulations of several canonical fractal objects were performed to verify the application of this theory; the results matched the theory well. Two different types of titanium powder were tested in isothermal thermogravimetric tests under dilute oxygen. Time-dependent mass uptake data were fit with power-law forms and the associated exponents were used to determine an equivalent fractal dimension. One Ti powder type has an implied surface dimension of ca. 2.3 to 2.5, suggesting fractal geometry may be operative. The other has a dimension near 2.0, indicating it behaves like traditional material.
Abstract not provided.
Abstract not provided.
Metallurgical and Materials Transactions. E, Materials for Energy Systems
The systematic development of microstructure, solidification characteristics, and heat of solidification with composition in copper-silicon-magnesium alloys for thermal energy storage is presented. Differential scanning calorimetry was used to relate the thermal characteristics to microstructural development in the investigated alloys and clarifies the location of one of the terminal three-phase eutectics. Repeated thermal cycling highlights the thermal storage stability of the transformation through multiple melting events. In conclusion, two near-terminal eutectic alloys display high enthalpies of solidification, relatively narrow melting ranges, and stable transformation hysteresis behaviors suited to thermal energy storage.
Abstract not provided.
Abstract not provided.
Powder Diffraction
High-temperature X-ray diffraction with concurrent gas chromatography (GC) was used to study cobalt disulfide cathode pellets disassembled from thermal batteries. When CoS2 cathode materials were analyzed in an air environment, oxidation of the K(Br, Cl) salt phase in the cathode led to the formation of K2SO4 that subsequently reacted with the pyrite-type CoS2 phase leading to cathode decomposition between ∼260 and 450 °C. Independent thermal analysis experiments, i.e. simultaneous thermogravimetric analysis/differential scanning calorimetry/mass spectrometry (MS), augmented the diffraction results and support the overall picture of CoS2 decomposition. Both gas analysis measurements (i.e. GC and MS) from the independent experiments confirmed the formation of SO2 off-gas species during breakdown of the CoS2. In contrast, characterization of the same cathode material under inert conditions showed the presence of CoS2 throughout the entire temperature range of analysis.
AIP Conference Proceedings
The use of perovskite oxides as a medium for thermochemical energy storage (TCES) in concentrating solar power systems is reported. The known reduction/oxidation (redox) active perovskites LaxSr1-xCoyMn1-yO3 (LSCM) and LaxSr1-xCoyFe1-yO3 (LSCF) were chosen as a starting point for such research. Materials of the LSCM and LSCF family were previously synthesized, their structure characterized, and thermodynamics reported for TCES operation. Building on this foundation, the reduction onset temperatures are examined for LSCM and LSCF compositions. The reduction extents and onset temperatures are tied to the crystallographic phase and reaction enthalpies. The effect of doping with Ba and K is discussed, and the potential shortcomings of this subset of materials families for TCES are described. The potential for long-term stability of the most promising material is examined through thermogravimetric cycling, scanning electron microscopy, and dilatometry. The stability over 100 cycles (450-1050 °C) of an LSCM composition is demonstrated.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
International Journal of Energy Research
Developing efficient thermal storage for concentrating solar power plants is essential to reducing the cost of generated electricity, extending or shifting the hours of operation, and facilitating renewable penetration into the grid. Perovskite materials of the CaBxMn1-xO3-δ family, where B=Al or Ti, promise improvements in cost and energy storage density over other perovskites currently under investigation. Thermogravimetric analysis of the thermal reduction and reoxidation of these materials was used to extract equilibrium thermodynamic parameters. The results demonstrate that these novel thermochemical energy storage media display the highest reaction enthalpy capacity for perovskites reported to date, with a reaction enthalpy of 390kJ/kg, a 56% increase over previously reported compositions.
ASME 2016 10th International Conference on Energy Sustainability, ES 2016, collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
In an effort to increase thermal energy storage densities and turbine inlet temperatures in concentrating solar power (CSP) systems, focus on energy storage media has shifted from molten salts to solid particles. These solid particles are stable at temperatures far greater than that of molten salts, allowing the use of efficient high-temperature turbines in the power cycle. Furthermore, many of the solid particles under development store heat via reversible chemical reactions (thermochemical energy storage, TCES) in addition to the heat they store as sensible energy. The heat-storing reaction is often the thermal reduction of a metal oxide. If coupled to an Air-Brayton system, wherein air is used as the turbine working fluid, the subsequent extraction of both reaction and sensible heat, as well as the transfer of heat to the working fluid, can be accomplished in a direct-contact, counter-flow reoxidation reactor. However, there are several design challenges unique to such a reactor, such as maintaining requisite residence times for reactions to occur, particle conveying and mitigation of entrainment, and the balance of kinetics and heat transfer rates to achieve reactor outlet temperatures in excess of 1200 °C. In this paper, insights to addressing these challenges are offered, and design and operational tradeoffs that arise in this highlycoupled system are introduced and discussed.
ASME 2016 10th International Conference on Energy Sustainability, ES 2016, collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology
Thermochemical energy storage (TCES) offers the potential for greatly increased storage density relative to sensible-only energy storage. Moreover, heat may be stored indefinitely in the form of chemical bonds via TCES, accessed upon demand, and converted to heat at temperatures significantly higher than current solar thermal electricity production technology and is therefore well-suited to more efficient high-temperature power cycles. The PROMOTES effort seeks to advance both materials and systems for TCES through the development and demonstration of an innovative storage approach for solarized Air-Brayton power cycles and that is based on newly-developed redox-active metal oxides that are mixed ionic-electronic conductors (MIEC). In this paper we summarize the system concept and review our work to date towards developing materials and individual components.
Abstract not provided.
Nature Communications
Establishing processing-structure-property relationships for monolayer materials is crucial for a range of applications spanning optics, catalysis, electronics and energy. Presently, for molybdenum disulfide, a promising catalyst for artificial photosynthesis, considerable debate surrounds the structure/property relationships of its various allotropes. Here we unambiguously solve the structure of molybdenum disulfide monolayers using high-resolution transmission electron microscopy supported by density functional theory and show lithium intercalation to direct a preferential transformation of the basal plane from 2H (trigonal prismatic) to 1T′ (clustered Mo). These changes alter the energetics of molybdenum disulfide interactions with hydrogen (ΔG H), and, with respect to catalysis, the 1T′ transformation renders the normally inert basal plane amenable towards hydrogen adsorption and hydrogen evolution. Indeed, we show basal plane activation of 1T′ molybdenum disulfide and a lowering of ΔG H from +1.6 eV for 2H to +0.18 eV for 1T′, comparable to 2H molybdenum disulfide edges on Au(111), one of the most active hydrogen evolution catalysts known.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Solar Energy
Materials in the LaxSr1–xCoyMn1–yO3–δ (LSCM) and LaxSr1–xCoyFe1–yO3–δ (LSCF) families are candidates for high-temperature thermochemical energy storage due to their facility for cyclic endothermic reduction and exothermic oxidation. A set of 16 LSCM and 21 LSCF compositions were synthesized by a modified Pechini method and characterized by powder X-ray diffraction and thermogravimetric analysis. All materials were found to be various symmetries of the perovskite phase. LSCM was indexed as tetragonal, cubic, rhombohedral, or orthorhombic as a function of increased lanthanum content. For LSCF, compositions containing low lanthanum content were indexed as cubic while materials with high lanthanum content were indexed as rhombohedral. An initial screening of redox activity was completed by thermogravimetric analysis for each composition. The top three compositions with the greatest recoverable redox capacity for each family were further characterized in equilibrium thermogravimetric experiments over a range of temperatures and oxygen partial pressures. As a result, these equilibrium experiments allowed the extraction of thermodynamic parameters for LSCM and LSCF compositions operated in thermochemical energy storage conditions.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The thermal properties of a commercial copper-diamond composite were measured from below -50°C to above 200°C. The results of thermal expansion, heat capacity, and thermal diffusivity were reported. These data were used to calculate the thermal conductivity of the composite as a function of temperature in the thickness direction. These results are compared with estimated values based on a simple mixing rule and the temperature dependence of these physical properties is represented by curve fitting equations. These fitting equations can be used for thermal modeling of practical devices/systems at their operation temperatures. The results of the mixing rule showed a consistent correlation between the amount of copper and diamond in the composite, based on density, thermal expansion, and heat capacity measurements. However, there was a disparity between measured and estimated thermal diffusivity and thermal conductivity. These discrepancies can be caused by many intrinsic material issues such as lattice defects and impurities, but the dominant factor is attributed to the large uncertainty of the interfacial thermal conductance between diamond and copper.
Abstract not provided.
Abstract not provided.
Abstract not provided.