Publications

Results 1–100 of 225

Search results

Jump to search filters

Permutation-adapted complete and independent basis for atomic cluster expansion descriptors

Journal of Computational Physics

Goff, James M.; Sievers, C.; Wood, Mitchell A.; Thompson, Aidan P.

Atomic cluster expansion (ACE) methods provide a systematic way to describe particle local environments of arbitrary body order. For practical applications it is often required that the basis of cluster functions be symmetrized with respect to rotations and permutations. Existing methodologies yield sets of symmetrized functions that are over-complete. These methodologies thus require an additional numerical procedure, such as singular value decomposition (SVD), to eliminate redundant functions. In this work, it is shown that analytical linear relationships for subsets of cluster functions may be derived using recursion and permutation properties of generalized Wigner symbols. From these relationships, subsets (blocks) of cluster functions can be selected such that, within each block, functions are guaranteed to be linearly independent. It is conjectured that this block-wise independent set of permutation-adapted rotation and permutation invariant (PA-RPI) functions forms a complete, independent basis for ACE. Along with the first analytical proofs of block-wise linear dependence of ACE cluster functions and other theoretical arguments, numerical results are offered to demonstrate this. The utility of the method is demonstrated in the development of an ACE interatomic potential for tantalum. Using the new basis functions in combination with Bayesian compressive sensing sparse regression, some high degree descriptors are observed to persist and help achieve high-accuracy models.

More Details

Predicting electronic structures at any length scale with machine learning

npj Computational Materials

Fiedler, Lenz; Modine, N.A.; Schmerler, Steve; Vogel, Dayton J.; Popoola, Gabriel A.; Thompson, Aidan P.; Rajamanickam, Sivasankaran R.; Cangi, Attila

The properties of electrons in matter are of fundamental importance. They give rise to virtually all material properties and determine the physics at play in objects ranging from semiconductor devices to the interior of giant gas planets. Modeling and simulation of such diverse applications rely primarily on density functional theory (DFT), which has become the principal method for predicting the electronic structure of matter. While DFT calculations have proven to be very useful, their computational scaling limits them to small systems. We have developed a machine learning framework for predicting the electronic structure on any length scale. It shows up to three orders of magnitude speedup on systems where DFT is tractable and, more importantly, enables predictions on scales where DFT calculations are infeasible. Our work demonstrates how machine learning circumvents a long-standing computational bottleneck and advances materials science to frontiers intractable with any current solutions.

More Details

Dynamic formation of preferentially lattice oriented, self trapped hydrogen clusters

Materials Research Express (Online)

Cusentino, Mary A.; Laros, James H.; McCarthy, Megan J.; Thompson, Aidan P.; Wood, Mitchell A.

A series of MD and DFT simulations were performed to investigate hydrogen self-clustering and retention in tungsten. Using a newly develop machine learned interatomic potential, spontaneous formation of hydrogen platelets was observed after implanting low-energy hydrogen into tungsten at high fluxes and temperatures. The platelets formed along low miller index orientations and neighboring tetrahedral and octahedral sites and could grow to over 50 atoms in size. High temperatures above 600 K and high hydrogen concentrations were needed to observe significant platelet formation. A critical platelet size of six hydrogen atoms was needed for long term stability. Platelets smaller than this were found to be thermally unstable within a few nanoseconds. To verify these observations, characteristic platelets from the MD simulations were simulated using large-scale DFT. DFT corroborated the MD results in that large platelets were also found to be dynamically stable for five or more hydrogen atoms. The LDOS from the DFT simulated platelets indicated that hydrogen atoms, particularly at the periphery of the platelet, were found to be at least as stable as hydrogen atoms in bulk tungsten. In addition, electrons were found to be localized around hydrogen atoms in the platelet itself and that hydrogen atoms up to 4.2 Å away within the platelet were found to share charge suggesting that the hydrogen atoms are interacting across longer distances than previously suggested. These results reveal a self-clustering mechanisms for hydrogen within tungsten in the absence of radiation induced or microstructural defects that could be a precursor to blistering and potentially explain the experimentally observed high hydrogen retention particularly in the near surface region.

More Details

Parallel simulation via SPPARKS of on-lattice kinetic and Metropolis Monte Carlo models for materials processing

Modelling and Simulation in Materials Science and Engineering

Mitchell, John A.; Abdeljawad, Fadi; Battaile, Corbett C.; Garcia-Cardona, Cristina; Holm, Elizabeth A.; Homer, Eric R.; Madison, Jonathan D.; Rodgers, Theron R.; Thompson, Aidan P.; Tikare, Veena; Webb, Ed; Plimpton, Steven J.

SPPARKS is an open-source parallel simulation code for developing and running various kinds of on-lattice Monte Carlo models at the atomic or meso scales. It can be used to study the properties of solid-state materials as well as model their dynamic evolution during processing. The modular nature of the code allows new models and diagnostic computations to be added without modification to its core functionality, including its parallel algorithms. A variety of models for microstructural evolution (grain growth), solid-state diffusion, thin film deposition, and additive manufacturing (AM) processes are included in the code. SPPARKS can also be used to implement grid-based algorithms such as phase field or cellular automata models, to run either in tandem with a Monte Carlo method or independently. For very large systems such as AM applications, the Stitch I/O library is included, which enables only a small portion of a huge system to be resident in memory. In this paper we describe SPPARKS and its parallel algorithms and performance, explain how new Monte Carlo models can be added, and highlight a variety of applications which have been developed within the code.

More Details

Computation of the thermal elastic constants for arbitrary manybody potentials in LAMMPS using the stress-fluctuation formalism

Computer Physics Communications

Thompson, Aidan P.; Clavier, Germain

This paper describes the implementation of the stress-fluctuation technique into the LAMMPS code to compute the anisotropic thermal elastic constants tensor of materials. The implementation provides both methods for computing the analytical fluctuation expressions and also a generic numerical derivative method. The former makes the extension to new potentials straightforward, as it requires writing code only for the second derivatives of each energy term w.r.t. distance, angle, etc. The latter provides a generic interface to compute an accurate approximation of the elastic constants for any potential already implemented in LAMMPS. We show how both methods compare with the direct deformation computation in several test cases and discuss the implementation advantages and limitations.

More Details

Temperature dependence of magnetic anisotropy and magnetoelasticity from classical spin-lattice calculations

Physical Review. B

Nikolov, Svetoslav V.; Nieves, Pablo; Thompson, Aidan P.; Wood, Mitchell A.; Tranchida, Julien

Here we present a classical molecular-spin dynamics (MSD) methodology that enables accurate computations of the temperature dependence of the magnetocrystalline anisotropy as well as magnetoelastic properties of magnetic materials. The nonmagnetic interactions are accounted for by a spectral neighbor analysis potential (SNAP) machine-learned interatomic potential, whereas the magnetoelastic contributions are accounted for using a combination of an extended Heisenberg Hamiltonian and a Néel pair interaction model, representing both the exchange interaction and spin-orbit-coupling effects, respectively. All magnetoelastic potential components are parameterized using a combination of first-principles and experimental data. Our framework is applied to the α phase of iron. Initial testing of our MSD model is done using a 0 K parametrization of the Néel interaction model. After this, we examine how individual Néel parameters impact the $B$1 and $B$2 magnetostrictive coefficients using a moment-independent δ sensitivity analysis. The results from this study are then used to initialize a genetic algorithm optimization which explores the Néel parameter phase space and tries to minimize the error in the B1 and B2 magnetostrictive coefficients in the range of 0–1200 K. Our results show that while both the 0 K and genetic algorithm optimized parametrization provide good experimental agreement for $B$1 and $B$2, only the genetic algorithm optimized results can capture the second peak in the $B$1 magnetostrictive coefficient which occurs near approximately 800 K.

More Details

Machine learned interatomic potential for dispersion strengthened plasma facing components

Journal of Chemical Physics

Laros, James H.; Cusentino, Mary A.; McCarthy, Megan J.; Tranchida, J.; Wood, Mitchell A.; Thompson, Aidan P.

Tungsten (W) is a material of choice for the divertor material due to its high melting temperature, thermal conductivity, and sputtering threshold. However, W has a very high brittle-to-ductile transition temperature, and at fusion reactor temperatures (≥1000 K), it may undergo recrystallization and grain growth. Dispersion-strengthening W with zirconium carbide (ZrC) can improve ductility and limit grain growth, but much of the effects of the dispersoids on microstructural evolution and thermomechanical properties at high temperatures are still unknown. We present a machine learned Spectral Neighbor Analysis Potential for W-ZrC that can now be used to study these materials. In order to construct a potential suitable for large-scale atomistic simulations at fusion reactor temperatures, it is necessary to train on ab initio data generated for a diverse set of structures, chemical environments, and temperatures. Further accuracy and stability tests of the potential were achieved using objective functions for both material properties and high temperature stability. Validation of lattice parameters, surface energies, bulk moduli, and thermal expansion is confirmed on the optimized potential. Tensile tests of W/ZrC bicrystals show that although the W(110)-ZrC(111) C-terminated bicrystal has the highest ultimate tensile strength (UTS) at room temperature, observed strength decreases with increasing temperature. At 2500 K, the terminating C layer diffuses into the W, resulting in a weaker W-Zr interface. Meanwhile, the W(110)-ZrC(111) Zr-terminated bicrystal has the highest UTS at 2500 K.

More Details

Training data selection for accuracy and transferability of interatomic potentials

npj Computational Materials

Montes de Oca Zapiain, David M.; Wood, Mitchell A.; Lubbers, Nicholas; Pereyra, Carlos Z.; Thompson, Aidan P.; Perez, Danny

Advances in machine learning (ML) have enabled the development of interatomic potentials that promise the accuracy of first principles methods and the low-cost, parallel efficiency of empirical potentials. However, ML-based potentials struggle to achieve transferability, i.e., provide consistent accuracy across configurations that differ from those used during training. In order to realize the promise of ML-based potentials, systematic and scalable approaches to generate diverse training sets need to be developed. This work creates a diverse training set for tungsten in an automated manner using an entropy optimization approach. Subsequently, multiple polynomial and neural network potentials are trained on the entropy-optimized dataset. A corresponding set of potentials are trained on an expert-curated dataset for tungsten for comparison. The models trained to the entropy-optimized data exhibited superior transferability compared to the expert-curated models. Furthermore, the models trained to the expert-curated set exhibited a significant decrease in performance when evaluated on out-of-sample configurations.

More Details

Accelerating Multiscale Materials Modeling with Machine Learning

Modine, N.A.; Stephens, John A.; Swiler, Laura P.; Thompson, Aidan P.; Vogel, Dayton J.; Cangi, Attila; Feilder, Lenz; Rajamanickam, Sivasankaran R.

The focus of this project is to accelerate and transform the workflow of multiscale materials modeling by developing an integrated toolchain seamlessly combining DFT, SNAP, LAMMPS, (shown in Figure 1-1) and a machine-learning (ML) model that will more efficiently extract information from a smaller set of first-principles calculations. Our ML model enables us to accelerate first-principles data generation by interpolating existing high fidelity data, and extend the simulation scale by extrapolating high fidelity data (102 atoms) to the mesoscale (104 atoms). It encodes the underlying physics of atomic interactions on the microscopic scale by adapting a variety of ML techniques such as deep neural networks (DNNs), and graph neural networks (GNNs). We developed a new surrogate model for density functional theory using deep neural networks. The developed ML surrogate is demonstrated in a workflow to generate accurate band energies, total energies, and density of the 298K and 933K Aluminum systems. Furthermore, the models can be used to predict the quantities of interest for systems with more number of atoms than the training data set. We have demonstrated that the ML model can be used to compute the quantities of interest for systems with 100,000 Al atoms. When compared with 2000 Al system the new surrogate model is as accurate as DFT, but three orders of magnitude faster. We also explored optimal experimental design techniques to choose the training data and novel Graph Neural Networks to train on smaller data sets. These are promising methods that need to be explored in the future.

More Details

Molecular Dynamics of High Pressure Tin Phases I: Strength and deformation evaluations of empirical potentials [Slides]

Lane, James M.; Cusentino, Mary A.; Nebgen, Ben; Barros, Kipton M.; Shimanek, John D.; Allen, Alice; Thompson, Aidan P.; Fensin, Saryu J.

Multi-phase problems have so many more unknowns, we’d like to have a tool to constrain some open questions related to microstructure and twin & dislocation behavior. We want an atomistic scale perspective on aspects of strength. Some multi-scale questions accessible to atomistic study: What lattice-specific behavior influences dislocation production/mobility and/or twinning? Do the phase transformations wipe-out, modify or preserve grain size and orientation? Does plastic strain reset at phase transition? If so under what conditions? Tin is the material chosen for the effort because it is non-hazardous and has multiple accessible solid phases at relatively low pressures.

More Details

Performant implementation of the atomic cluster expansion (PACE) and application to copper and silicon

npj Computational Materials

Lysogorskiy, Yury; Van Der Oord, Van; Bochkarev, Anton; Menon, Sarath; Rinaldi, Matteo; Hammerschmidt, Thomas; Mrovec, Matous; Thompson, Aidan P.; Csanyi, Gabor; Ortner, Christoph; Drautz, Ralf

The atomic cluster expansion is a general polynomial expansion of the atomic energy in multi-atom basis functions. Here we implement the atomic cluster expansion in the performant C++ code PACE that is suitable for use in large-scale atomistic simulations. We briefly review the atomic cluster expansion and give detailed expressions for energies and forces as well as efficient algorithms for their evaluation. We demonstrate that the atomic cluster expansion as implemented in PACE shifts a previously established Pareto front for machine learning interatomic potentials toward faster and more accurate calculations. Moreover, general purpose parameterizations are presented for copper and silicon and evaluated in detail. We show that the Cu and Si potentials significantly improve on the best available potentials for highly accurate large-scale atomistic simulations.

More Details

$\mathrm{LAMMPS}$ - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales

Computer Physics Communications

Thompson, Aidan P.; Aktulga, H.M.; Berger, Richard; Bolintineanu, Dan S.; Brown, W.M.; Crozier, Paul C.; In 'T Veld, Pieter J.; Kohlmeyer, Axel; Moore, Stan G.; Nguyen, Trung D.; Shan, Ray; Stevens, Mark J.; Tranchida, Julien; Trott, Christian R.; Plimpton, Steven J.

Since the classical molecular dynamics simulator LAMMPS was released as an open source code in 2004, it has become a widely-used tool for particle-based modeling of materials at length scales ranging from atomic to mesoscale to continuum. Reasons for its popularity are that it provides a wide variety of particle interaction models for different materials, that it runs on any platform from a single CPU core to the largest supercomputers with accelerators, and that it gives users control over simulation details, either via the input script or by adding code for new interatomic potentials, constraints, diagnostics, or other features needed for their models. As a result, hundreds of people have contributed new capabilities to LAMMPS and it has grown from fifty thousand lines of code in 2004 to a million lines today. In this paper several of the fundamental algorithms used in LAMMPS are described along with the design strategies which have made it flexible for both users and developers. We also highlight some capabilities recently added to the code which were enabled by this flexibility, including dynamic load balancing, on-the-fly visualization, magnetic spin dynamics models, and quantum-accuracy machine learning interatomic potentials.

More Details

Accelerating Finite-Temperature Kohn-Sham Density Functional Theory with Deep Neural Networks

Ellis, J.A.; Fielder, Lenz; Popoola, Gabriel A.; Modine, N.A.; Stephens, John A.; Thompson, Aidan P.; Rajamanickam, Sivasankaran R.

We present a numerical modeling workflow based on machine learning (ML) which reproduces the total energies produced by Kohn-Sham density functional theory (DFT) at finite electronic temperature to within chemical accuracy at negligible computational cost. Based on deep neural networks, our workflow yields the local density of states (LDOS) for a given atomic configuration. From the LDOS, spatially-resolved, energy-resolved, and integrated quantities can be calculated, including the DFT total free energy, which serves as the Born-Oppenheimer potential energy surface for the atoms. We demonstrate the efficacy of this approach for both solid and liquid metals and compare results between independent and unified machine-learning models for solid and liquid aluminum. Our machine-learning density functional theory framework opens up the path towards multiscale materials modeling for matter under ambient and extreme conditions at a computational scale and cost that is unattainable with current algorithms.

More Details

Beryllium-driven structural evolution at the divertor surface

Nuclear Fusion

Cusentino, Mary A.; Wood, Mitchell A.; Thompson, Aidan P.

Erosion of the beryllium first wall material in tokamak reactors has been shown to result in transport and deposition on the tungsten divertor. Experimental studies of beryllium implantation in tungsten indicate that mixed W–Be intermetallic deposits can form, which have lower melting temperatures than tungsten and can trap tritium at higher rates. To better understand the formation and growth rate of these intermetallics, we performed cumulative molecular dynamics (MD) simulations of both high and low energy beryllium deposition in tungsten. In both cases, a W–Be mixed material layer (MML) emerged at the surface within several nanoseconds, either through energetic implantation or a thermally-activated exchange mechanism, respectively. While some ordering of the material into intermetallics occurred, fully ordered structures did not emerge from the deposition simulations. Targeted MD simulations of the MML to further study the rate of Be diffusion and intermetallic growth rates indicate that for both cases, the gradual re-structuring of the material into an ordered intermetallic layer is beyond accessible MD time scales(≤1 μs). However, the rapid formation of the MML within nanoseconds indicates that beryllium deposition can influence other plasma species interactions at the surface and begin to alter the tungsten material properties. Therefore, beryllium deposition on the divertor surface, even in small amounts, is likely to cause significant changes in plasma-surface interactions and will need to be considered in future studies.

More Details

Performant implementation of the atomic cluster expansion

Lysogorskiy, Yury; Rinaldi, Matteo; Menon, Sarath; Van Der Oord, Van; Hammerschmidt, Thomas; Mrovec, Matous; Thompson, Aidan P.; Csanyi, Gabor; Ortner, Christoph; Drautz, Ralf

The atomic cluster expansion is a general polynomial expansion of the atomic energy in multi-atom basis functions. Here we implement the atomic cluster expansion in the performant C++ code PACE that is suitable for use in large scale atomistic simulations. We briefly review the atomic cluster expansion and give detailed expressions for energies and forces as well as efficient algorithms for their evaluation. We demonstrate that the atomic cluster expansion as implemented in PACE shifts a previously established Pareto front for machine learning interatomic potentials towards faster and more accurate calculations. Moreover, general purpose parameterizations are presented for copper and silicon and evaluated in detail. We show that the new Cu and Si potentials significantly improve on the best available potentials for highly accurate large-scale atomistic simulations.

More Details

Towards Predictive Plasma Science and Engineering through Revolutionary Multi-Scale Algorithms and Models (Final Report)

Laity, George R.; Robinson, Allen C.; Cuneo, M.E.; Alam, Mary K.; Beckwith, Kristian B.; Bennett, Nichelle L.; Bettencourt, Matthew T.; Bond, Stephen D.; Cochrane, Kyle C.; Criscenti, Louise C.; Cyr, Eric C.; Laros, James H.; Drake, Richard R.; Evstatiev, Evstati G.; Fierro, Andrew S.; Gardiner, Thomas A.; Laros, James H.; Goeke, Ronald S.; Hamlin, Nathaniel D.; Hooper, Russell H.; Koski, Jason K.; Lane, James M.; Larson, Steven R.; Leung, Kevin L.; McGregor, Duncan A.; Miller, Philip R.; Miller, Sean M.; Ossareh, Susan J.; Phillips, Edward G.; Simpson, Sean S.; Sirajuddin, David S.; Smith, Thomas M.; Swan, Matthew S.; Thompson, Aidan P.; Tranchida, Julien G.; Bortz-Johnson, Asa J.; Welch, Dale R.; Russell, Alex M.; Watson, Eric D.; Rose, David V.; McBride, Ryan D.

This report describes the high-level accomplishments from the Plasma Science and Engineering Grand Challenge LDRD at Sandia National Laboratories. The Laboratory has a need to demonstrate predictive capabilities to model plasma phenomena in order to rapidly accelerate engineering development in several mission areas. The purpose of this Grand Challenge LDRD was to advance the fundamental models, methods, and algorithms along with supporting electrode science foundation to enable a revolutionary shift towards predictive plasma engineering design principles. This project integrated the SNL knowledge base in computer science, plasma physics, materials science, applied mathematics, and relevant application engineering to establish new cross-laboratory collaborations on these topics. As an initial exemplar, this project focused efforts on improving multi-scale modeling capabilities that are utilized to predict the electrical power delivery on large-scale pulsed power accelerators. Specifically, this LDRD was structured into three primary research thrusts that, when integrated, enable complex simulations of these devices: (1) the exploration of multi-scale models describing the desorption of contaminants from pulsed power electrodes, (2) the development of improved algorithms and code technologies to treat the multi-physics phenomena required to predict device performance, and (3) the creation of a rigorous verification and validation infrastructure to evaluate the codes and models across a range of challenge problems. These components were integrated into initial demonstrations of the largest simulations of multi-level vacuum power flow completed to-date, executed on the leading HPC computing machines available in the NNSA complex today. These preliminary studies indicate relevant pulsed power engineering design simulations can now be completed in (of order) several days, a significant improvement over pre-LDRD levels of performance.

More Details

Suppression of helium bubble nucleation in beryllium exposed tungsten surfaces

Nuclear Fusion

Cusentino, Mary A.; Wood, Mitchell A.; Thompson, Aidan P.

One of the most severe obstacles to increasing the longevity of tungsten-based plasma facing components, such as divertor tiles, is the surface deterioration driven by sub-surface helium bubble formation and rupture. Supported by experimental observations at PISCES, this work uses molecular dynamics simulations to identify the microscopic mechanisms underlying suppression of helium bubble formation by the introduction of plasma-borne beryllium. Simulations of the initial surface material (crystalline W), early-time Be exposure (amorphous W-Be) and final WBe2 intermetallic surfaces were used to highlight the effect of Be. Significant differences in He retention, depth distribution and cluster size were observed in the cases with beryllium present. Helium resided much closer to the surface in the Be cases with nearly 80% of the total helium inventory located within the first 2 nm. Moreover, coarsening of the He depth profile due to bubble formation is suppressed due to a one-hundred fold decrease in He mobility in WBe2, relative to crystalline W. This is further evidenced by the drastic reduction in He cluster sizes even when it was observed that both the amorphous W-Be and WBe2 intermetallic phases retain nearly twice as much He during cumulative implantation studies.

More Details

Scale and rate in CdS pressure-induced phase transition

AIP Conference Proceedings

Lane, James M.; Koski, Jason K.; Thompson, Aidan P.; Srivastava, Ishan S.; Grest, Gary S.; Ao, Tommy A.; Stoltzfus, Brian S.; Austin, Kevin N.; Fan, Hongyou F.; Morgan, Dane; Knudson, Marcus D.

Here, we describe recent efforts to improve our predictive modeling of rate-dependent behavior at, or near, a phase transition using molecular dynamics simulations. Cadmium sulfide (CdS) is a well-studied material that undergoes a solid-solid phase transition from wurtzite to rock salt structures between 3 and 9 GPa. Atomistic simulations are used to investigate the dominant transition mechanisms as a function of orientation, size and rate. We found that the final rock salt orientations were determined relative to the initial wurtzite orientation, and that these orientations were different for the two orientations and two pressure regimes studied. The CdS solid-solid phase transition is studied, for both a bulk single crystal and for polymer-encapsulated spherical nanoparticles of various sizes.

More Details

Accelerating Finite-temperature Kohn-Sham Density Functional Theory\ with Deep Neural Networks

Ellis, John E.; Cangi, Attila; Modine, N.A.; Stephens, John A.; Thompson, Aidan P.; Rajamanickam, Sivasankaran R.

We present a numerical modeling workflow based on machine learning (ML) which reproduces the the total energies produced by Kohn-Sham density functional theory (DFT) at finite electronic temperature to within chemical accuracy at negligible computational cost. Based on deep neural networks, our workflow yields the local density of states (LDOS) for a given atomic configuration. From the LDOS, spatially-resolved, energy-resolved, and integrated quantities can be calculated, including the DFT total free energy, which serves as the Born-Oppenheimer potential energy surface for the atoms. We demonstrate the efficacy of this approach for both solid and liquid metals and compare results between independent and unified machine-learning models for solid and liquid aluminum. Our machine-learning density functional theory framework opens up the path towards multiscale materials modeling for matter under ambient and extreme conditions at a computational scale and cost that is unattainable with current algorithms.

More Details

Neural Network Interatomic Potentials

Saavedra, Gary J.; Thompson, Aidan P.

In this project, we investigate the use of neural networks for the prediction of molecular properties, namely the interatomic potential. We use the machine learning package Tensorflow to build a variety of neural networks and compare performance with a popular Fortran package - Atomic Energy Networks (aenet). There are two primary goals for this work: 1) use the wide availability of different optimization techniques in Tensorflow to outperform aenet and 2) use new descriptors that can outperform Behler descriptors.

More Details

Multi-fidelity machine-learning with uncertainty quantification and Bayesian optimization for materials design: Application to ternary random alloys

Journal of Chemical Physics

Laros, James H.; Wildey, Timothy M.; Tranchida, Julien G.; Thompson, Aidan P.

We present a scale-bridging approach based on a multi-fidelity (MF) machine-learning (ML) framework leveraging Gaussian processes (GP) to fuse atomistic computational model predictions across multiple levels of fidelity. Through the posterior variance of the MFGP, our framework naturally enables uncertainty quantification, providing estimates of confidence in the predictions. We used density functional theory as high-fidelity prediction, while a ML interatomic potential is used as low-fidelity prediction. Practical materials' design efficiency is demonstrated by reproducing the ternary composition dependence of a quantity of interest (bulk modulus) across the full aluminum-niobium-titanium ternary random alloy composition space. The MFGP is then coupled to a Bayesian optimization procedure, and the computational efficiency of this approach is demonstrated by performing an on-the-fly search for the global optimum of bulk modulus in the ternary composition space. The framework presented in this manuscript is the first application of MFGP to atomistic materials simulations fusing predictions between density functional theory and classical interatomic potential calculations.

More Details

Simple and efficient algorithms for training machine learning potentials to force data

Smith, Justin S.; Lubbers, Nicholas; Thompson, Aidan P.; Barros, Kipton

Machine learning models, trained on data from ab initio quantum simulations, are yielding molecular dynamics potentials with unprecedented accuracy. One limiting factor is the quantity of available training data, which can be expensive to obtain. A quantum simulation often provides all atomic forces, in addition to the total energy of the system. These forces provide much more information than the energy alone. It may appear that training a model to this large quantity of force data would introduce significant computational costs. Actually, training to all available force data should only be a few times more expensive than training to energies alone. Here, we present a new algorithm for efficient force training, and benchmark its accuracy by training to forces from real-world datasets for organic chemistry and bulk aluminum.

More Details

A Performance and Cost Assessment of Machine Learning Interatomic Potentials

Journal of Physical Chemistry. A, Molecules, Spectroscopy, Kinetics, Environment, and General Theory

Zuo, Yunxing; Chen, Chi; Li, Xiangguo; Deng, Zhi; Chen, Yiming; Behler, Jorg; Csanyi, Gabor; Shapeev, Alexander V.; Thompson, Aidan P.; Wood, Mitchell A.; Ong, Shyue P.

Machine learning of the quantitative relationship between local environment descriptors and the potential energy surface of a system of atoms has emerged as a new frontier in the development of interatomic potentials (IAPs). Here, we present a comprehensive evaluation of ML-IAPs based on four local environment descriptors --- Behler-Parrinello symmetry functions, smooth overlap of atomic positions (SOAP), the Spectral Neighbor Analysis Potential (SNAP) bispectrum components, and moment tensors --- using a diverse data set generated using high-throughput density functional theory (DFT) calculations. The data set comprising bcc (Li, Mo) and fcc (Cu, Ni) metals and diamond group IV semiconductors (Si, Ge) is chosen to span a range of crystal structures and bonding. All descriptors studied show excellent performance in predicting energies and forces far surpassing that of classical IAPs, as well as predicting properties such as elastic constants and phonon dispersion curves. We observe a general trade-off between accuracy and the degrees of freedom of each model, and consequently computational cost. We will discuss these trade-offs in the context of model selection for molecular dynamics and other applications.

More Details

Data-driven material models for atomistic simulation

Physical Review B

Wood, Mitchell A.; Thompson, Aidan P.; Cusentino, Mary A.; Wirth, B.D.

The central approximation made in classical molecular dynamics simulation of materials is the interatomic potential used to calculate the forces on the atoms. Great effort and ingenuity is required to construct viable functional forms and find accurate parametrizations for potentials using traditional approaches. Machine learning has emerged as an effective alternative approach to develop accurate and robust interatomic potentials. Starting with a very general model form, the potential is learned directly from a database of electronic structure calculations and therefore can be viewed as a multiscale link between quantum and classical atomistic simulations. Risk of inaccurate extrapolation exists outside the narrow range of time and length scales where the two methods can be directly compared. In this work, we use the spectral neighbor analysis potential (SNAP) and show how a fit can be produced with minimal interpolation errors which is also robust in extrapolating beyond training. To demonstrate the method, we have developed a tungsten-beryllium potential suitable for the full range of binary compositions. Subsequently, large-scale molecular dynamics simulations were performed of high energy Be atom implantation onto the (001) surface of solid tungsten. The machine learned W-Be potential generates a population of implantation structures consistent with quantum calculations of defect formation energies. A very shallow (<2nm) average Be implantation depth is predicted which may explain ITER diverter degradation in the presence of beryllium.

More Details
Results 1–100 of 225
Results 1–100 of 225