Publications

21 Results
Skip to search filters

Investigating growth to detonation in vapor-deposited hexanitrostilbene and pentaerythritol tetranitrate films using high-throughput methods

Journal of Applied Physics

Knepper, Robert; Rupper, Stephen G.; DeJong, Stephanie D.; Marquez, Michael P.; Kittell, David E.; Schmitt, Randal L.; Tappan, Alexander S.

In this work, a high-throughput experimental setup was used to characterize initiation threshold and growth to detonation in the explosives hexanitrostilbene (HNS) and pentaerythritol tetranitrate (PETN). The experiment sequentially launched an array of laser-driven flyers to shock samples arranged in a 96-well microplate geometry, with photonic Doppler velocimetry diagnostics to characterize flyer velocity and particle velocity at the explosive–substrate interface. Vapor-deposited films of HNS and PETN were used to provide numerous samples with various thicknesses, enabling characterization of the evolution of growth to detonation. One-dimensional hydrocode simulations were performed with reactions disabled to illustrate where the experimental data deviate from the predicted inert response. Prompt initiation was observed in 144 μm thick HNS films at flyer velocities near 3000 m/s and in 125 μm thick PETN films at flyer velocities near 2400 m/s. This experimental setup enables rapid quantification of the growth of reactions in explosive materials that can reach detonation at sub-millimeter length scales. These data can subsequently be used for parameterizing reactive burn models in hydrocode simulations, as discussed in Paper II [D. E. Kittell, R. Knepper, and A. S. Tappan, J. Appl. Phys. 131, 154902 (2022)].

More Details

Refractive Imaging of Air Shock Above Microscale Defects in Pentaerythritol Tetranitrate (PETN) Films

Propellants, Explosives, Pyrotechnics

Peguero II, Julio C.; Forrest, Eric C.; Knepper, Robert; Hargather, Michael J.; Tappan, Alexander S.; Marquez, Michael P.; Vasiliauskas, Jonathan G.; Rupper, Stephen G.

Physical vapor deposition (PVD) of high explosives can produce energetic samples with unique microstructure and morphology compared to traditional powder processing techniques, but challenges may exist in fabricating explosive films without defects. Deposition conditions and substrate material may promote microcracking and other defects in the explosive films. In this study, we investigate effects of engineered microscale defects (gaps) on detonation propagation and failure for pentaerythritol tetranitrate (PETN) films using ultra-high-speed refractive imaging and hydrocode modelling. Observations of the air shock above the gap reveal significant instabilities during gap crossing and re-ignition.

More Details

Investigating Typical Additive Manufacturing Defect Geometries using Physical Vapor Deposition Explosives as a Model System

AIP Conference Proceedings

O'Grady, Caitlin H.; Marquez, Michael P.; Rupper, Stephen G.; Vasiliauskas, Jonathan G.; Knepper, Robert; Son, Steven F.; Tappan, Alexander S.

Additive Manufacturing (AM) techniques are increasingly being utilized for energetic material processes and research. Energetic material samples fabricated using these techniques can develop artifacts or defects during the manufacturing process. In this work, we use Physical Vapor Deposition (PVD) of explosive samples as a model system to investigate the effects of typical AM artifact or defect geometries on detonation propagation. PVD techniques allow for precise control of geometry to simulate typical AM artifacts or defects embedded into explosive samples. This experiment specifically investigates triangular and diamond-shaped artifacts that can result during direct-ink-writing (Robocasting). Samples were prepared with different sizes of voids embedded into the films. An ultra-high-speed framing camera and streak camera were used to view the samples under dynamic shock loading. It was determined that both geometry and size of the defects have a significant impact on the detonation front.

More Details

Posters for AA/CE Reception

Kuether, Robert J.; Allensworth, Brooke M.; Backer, Adam B.; Chen, Elton Y.; Dingreville, Remi P.; Forrest, Eric C.; Knepper, Robert; Tappan, Alexander S.; Marquez, Michael P.; Vasiliauskas, Jonathan G.; Rupper, Stephen G.; Grant, Michael J.; Atencio, Lauren C.; Hipple, Tyler J.; Maes, Danae M.; Timlin, Jerilyn A.; Ma, Tian J.; Garcia, Rudy J.; Danford, Forest L.; Patrizi, Laura P.; Galasso, Jennifer G.; Draelos, Timothy J.; Gunda, Thushara G.; Venezuela, Otoniel V.; Brooks, Wesley A.; Anthony, Stephen M.; Carson, Bryan C.; Reeves, Michael J.; Roach, Matthew R.; Maines, Erin M.; Lavin, Judith M.; Whetten, Shaun R.; Swiler, Laura P.

Abstract not provided.

Pressure dependence of electronic states in secondary explosives: comparison between bulk and air/explosive interface

Farrow, Darcie F.; Farrow, Darcie F.; Kohl, Ian T.; Kohl, Ian T.; Rupper, Stephen G.; Rupper, Stephen G.; Alam, Mary K.; Alam, Mary K.; Martin, Laura E.; Martin, Laura E.; Fan, Hongyou F.; Fan, Hongyou F.; Bian, Kaifu B.; Bian, Kaifu B.; Knepper, Robert; Knepper, Robert; Marquez, Michael P.; Marquez, Michael P.; Kay, Jeffrey J.; Kay, Jeffrey J.

Abstract not provided.

21 Results
21 Results