Publications

Results 26–50 of 374

Search results

Jump to search filters

A domain wall-magnetic tunnel junction artificial synapse with notched geometry for accurate and efficient training of deep neural networks

Applied Physics Letters

Liu, Samuel; Xiao, Tianyao X.; Cui, Can; Incorvia, Jean A.C.; Bennett, Christopher H.; Marinella, Matthew J.

Inspired by the parallelism and efficiency of the brain, several candidates for artificial synapse devices have been developed for neuromorphic computing, yet a nonlinear and asymmetric synaptic response curve precludes their use for backpropagation, the foundation of modern supervised learning. Spintronic devices - which benefit from high endurance, low power consumption, low latency, and CMOS compatibility - are a promising technology for memory, and domain-wall magnetic tunnel junction (DW-MTJ) devices have been shown to implement synaptic functions such as long-term potentiation and spike-timing dependent plasticity. In this work, we propose a notched DW-MTJ synapse as a candidate for supervised learning. Using micromagnetic simulations at room temperature, we show that notched synapses ensure the non-volatility of the synaptic weight and allow for highly linear, symmetric, and reproducible weight updates using either spin transfer torque (STT) or spin-orbit torque (SOT) mechanisms of DW propagation. We use lookup tables constructed from micromagnetics simulations to model the training of neural networks built with DW-MTJ synapses on both the MNIST and Fashion-MNIST image classification tasks. Accounting for thermal noise and realistic process variations, the DW-MTJ devices achieve classification accuracy close to ideal floating-point updates using both STT and SOT devices at room temperature and at 400 K. Our work establishes the basis for a magnetic artificial synapse that can eventually lead to hardware neural networks with fully spintronic matrix operations implementing machine learning.

More Details

Identification of localized radiation damage in power MOSFETs using EBIC imaging

Applied Physics Letters

Ashby, David; Garland, Diana; Vizkelethy, Gyorgy V.; Marinella, Matthew J.; McLain, Michael L.; Llinas, J.P.; Talin, A.A.

The rapidly increasing use of electronics in high-radiation environments and the continued evolution in transistor architectures and materials demand improved methods to characterize the potential damaging effects of radiation on device performance. Here, electron-beam-induced current is used to map hot-carrier transport in model metal-oxide semiconductor field-effect transistors irradiated with a 300 KeV focused He+ beam as a localized line spanning across the gate and bulk Si. By correlating the damage to the electronic properties and combining these results with simulations, the contribution of spatially localized radiation damage on the device characteristics is obtained. This identified damage, caused by the He+ beam, is attributed to localized interfacial Pb centers and delocalized positive fixed-charges, as surmised from simulations. Comprehension of the long-term interaction and mobility of radiation-induced damage are key for future design of rad-hard devices.

More Details

Heavy-Ion-Induced Displacement Damage Effects in Magnetic Tunnel Junctions with Perpendicular Anisotropy

IEEE Transactions on Nuclear Science

Xiao, Tianyao X.; Bennett, Christopher H.; Mancoff, Frederick B.; Manuel, Jack E.; Hughart, David R.; Jacobs-Gedrim, Robin B.; Bielejec, Edward S.; Vizkelethy, Gyorgy V.; Sun, Jijun; Aggarwal, Sanjeev; Arghavani, Reza A.; Marinella, Matthew J.

We evaluate the resilience of CoFeB/MgO/CoFeB magnetic tunnel junctions (MTJs) with perpendicular magnetic anisotropy (PMA) to displacement damage induced by heavy-ion irradiation. MTJs were exposed to 3-MeV Ta2+ ions at different levels of ion beam fluence spanning five orders of magnitude. The devices remained insensitive to beam fluences up to $10^{11}$ ions/cm2, beyond which a gradual degradation in the device magnetoresistance, coercive magnetic field, and spin-transfer-torque (STT) switching voltage were observed, ending with a complete loss of magnetoresistance at very high levels of displacement damage (>0.035 displacements per atom). The loss of magnetoresistance is attributed to structural damage at the MgO interfaces, which allows electrons to scatter among the propagating modes within the tunnel barrier and reduces the net spin polarization. Ion-induced damage to the interface also reduces the PMA. This study clarifies the displacement damage thresholds that lead to significant irreversible changes in the characteristics of STT magnetic random access memory (STT-MRAM) and elucidates the physical mechanisms underlying the deterioration in device properties.

More Details

Radiation Effects in Advanced and Emerging Nonvolatile Memories

IEEE Transactions on Nuclear Science

Marinella, Matthew J.

Despite hitting major roadblocks in 2-D scaling, NAND flash continues to scale in the vertical direction and dominate the commercial nonvolatile memory market. However, several emerging nonvolatile technologies are under development by major commercial foundries or are already in small volume production, motivated by storage-class memory and embedded application drivers. These include spin-transfer torque magnetic random access memory (STT-MRAM), resistive random access memory (ReRAM), phase change random access memory (PCRAM), and conductive bridge random access memory (CBRAM). Emerging memories have improved resilience to radiation effects compared to flash, which is based on storing charge, and hence may offer an expanded selection from which radiation-tolerant system designers can choose from in the future. This review discusses the material and device physics, fabrication, operational principles, and commercial status of scaled 2-D flash, 3-D flash, and emerging memory technologies. Radiation effects relevant to each of these memories are described, including the physics of and errors caused by total ionizing dose, displacement damage, and single-event effects, with an eye toward the future role of emerging technologies in radiation environments.

More Details

Radiation Effects in Advanced and Emerging Nonvolatile Memories

IEEE Transactions on Nuclear Science

Marinella, Matthew J.

Despite hitting major roadblocks in 2-D scaling, NAND flash continues to scale in the vertical direction and dominate the commercial nonvolatile memory market. However, several emerging nonvolatile technologies are under development by major commercial foundries or are already in small volume production, motivated by storage-class memory and embedded application drivers. These include spin-transfer torque magnetic random access memory (STT-MRAM), resistive random access memory (ReRAM), phase change random access memory (PCRAM), and conductive bridge random access memory (CBRAM). Emerging memories have improved resilience to radiation effects compared to flash, which is based on storing charge, and hence may offer an expanded selection from which radiation-tolerant system designers can choose from in the future. This review discusses the material and device physics, fabrication, operational principles, and commercial status of scaled 2-D flash, 3-D flash, and emerging memory technologies. Radiation effects relevant to each of these memories are described, including the physics of and errors caused by total ionizing dose, displacement damage, and single-event effects, with an eye toward the future role of emerging technologies in radiation environments.

More Details

Ionizing Radiation Effects in SONOS-Based Neuromorphic Inference Accelerators

IEEE Transactions on Nuclear Science

Xiao, Tianyao X.; Bennett, Christopher H.; Agarwal, Sapan A.; Hughart, David R.; Barnaby, Hugh J.; Puchner, Helmut; Prabhakar, Venkatraman; Talin, A.A.; Marinella, Matthew J.

We evaluate the sensitivity of neuromorphic inference accelerators based on silicon-oxide-nitride-oxide-silicon (SONOS) charge trap memory arrays to total ionizing dose (TID) effects. Data retention statistics were collected for 16 Mbit of 40-nm SONOS digital memory exposed to ionizing radiation from a Co-60 source, showing good retention of the bits up to the maximum dose of 500 krad(Si). Using this data, we formulate a rate-equation-based model for the TID response of trapped charge carriers in the ONO stack and predict the effect of TID on intermediate device states between 'program' and 'erase.' This model is then used to simulate arrays of low-power, analog SONOS devices that store 8-bit neural network weights and support in situ matrix-vector multiplication. We evaluate the accuracy of the irradiated SONOS-based inference accelerator on two image recognition tasks - CIFAR-10 and the challenging ImageNet data set - using state-of-the-art convolutional neural networks, such as ResNet-50. We find that across the data sets and neural networks evaluated, the accelerator tolerates a maximum TID between 10 and 100 krad(Si), with deeper networks being more susceptible to accuracy losses due to TID.

More Details

Radiation Effects in Advanced and Emerging Nonvolatile Memories

IEEE Transactions on Nuclear Science

Marinella, Matthew J.

Despite hitting major roadblocks in 2-D scaling, NAND flash continues to scale in the vertical direction and dominate the commercial nonvolatile memory market. However, several emerging nonvolatile technologies are under development by major commercial foundries or are already in small volume production, motivated by storage-class memory and embedded application drivers. These include spin-transfer torque magnetic random access memory (STT-MRAM), resistive random access memory (ReRAM), phase change random access memory (PCRAM), and conductive bridge random access memory (CBRAM). Emerging memories have improved resilience to radiation effects compared to flash, which is based on storing charge, and hence may offer an expanded selection from which radiation-tolerant system designers can choose from in the future. This review discusses the material and device physics, fabrication, operational principles, and commercial status of scaled 2-D flash, 3-D flash, and emerging memory technologies. Radiation effects relevant to each of these memories are described, including the physics of and errors caused by total ionizing dose, displacement damage, and single-event effects, with an eye toward the future role of emerging technologies in radiation environments.

More Details

Multiscale System Modeling of Single-Event-Induced Faults in Advanced Node Processors

IEEE Transactions on Nuclear Science

Cannon, Matthew J.; Rodrigues, Arun; Black, Dolores A.; Black, Jeff; Bustamante, Luis G.; Feinberg, Benjamin F.; Quinn, Heather; Clark, Lawrence T.; Brunhaver, John S.; Barnaby, Hugh; McLain, Michael L.; Agarwal, Sapan A.; Marinella, Matthew J.

Integration-technology feature shrink increases computing-system susceptibility to single-event effects (SEE). While modeling SEE faults will be critical, an integrated processor's scope makes physically correct modeling computationally intractable. Without useful models, presilicon evaluation of fault-tolerance approaches becomes impossible. To incorporate accurate transistor-level effects at a system scope, we present a multiscale simulation framework. Charge collection at the 1) device level determines 2) circuit-level transient duration and state-upset likelihood. Circuit effects, in turn, impact 3) register-transfer-level architecture-state corruption visible at 4) the system level. Thus, the physically accurate effects of SEEs in large-scale systems, executed on a high-performance computing (HPC) simulator, could be used to drive cross-layer radiation hardening by design. We demonstrate the capabilities of this model with two case studies. First, we determine a D flip-flop's sensitivity at the transistor level on 14-nm FinFet technology, validating the model against published cross sections. Second, we track and estimate faults in a microprocessor without interlocked pipelined stages (MIPS) processor for Adams 90% worst case environment in an isotropic space environment.

More Details

In situ Parallel Training of Analog Neural Network Using Electrochemical Random-Access Memory

Frontiers in Neuroscience (Online)

Talin, A.A.; Li, Yiyang; Fuller, Elliot J.; Bennett, Christopher H.; Xiao, Tianyao X.; Salleo, Alberto; Melianas, Armantas; Isele, Erik; Marinella, Matthew J.; Tao, Hanbo

In-memory computing based on non-volatile resistive memory can significantly improve the energy efficiency of artificial neural networks. However, accurate in situ training has been challenging due to the nonlinear and stochastic switching of the resistive memory elements. One promising analog memory is the electrochemical random-access memory (ECRAM), also known as the redox transistor. Its low write currents and linear switching properties across hundreds of analog states enable accurate and massively parallel updates of a full crossbar array, which yield rapid and energy-efficient training. While simulations predict that ECRAM based neural networks achieve high training accuracy at significantly higher energy efficiency than digital implementations, these predictions have not been experimentally achieved. In this work, we train a 3 × 3 array of ECRAM devices that learns to discriminate several elementary logic gates (AND, OR, NAND). We record the evolution of the network’s synaptic weights during parallel in situ (on-line) training, with outer product updates. Due to linear and reproducible device switching characteristics, our crossbar simulations not only accurately simulate the epochs to convergence, but also quantitatively capture the evolution of weights in individual devices. The implementation of the first in situ parallel training together with strong agreement with simulation results provides a significant advance toward developing ECRAM into larger crossbar arrays for artificial neural network accelerators, which could enable orders of magnitude improvements in energy efficiency of deep neural networks.

More Details

An Analog Preconditioner for Solving Linear Systems [Slides]

Feinberg, Benjamin F.; Wong, Ryan; Xiao, Tianyao X.; Rohan, Jacob N.; Boman, Erik G.; Marinella, Matthew J.; Agarwal, Sapan A.; Ipek, Engin

This presentation concludes in situ computation enables new approaches to linear algebra problems which can be both more effective and more efficient as compared to conventional digital systems. Preconditioning is well-suited to analog computation due to the tolerance for approximate solutions. When combined with prior work on in situ MVM for scientific computing, analog preconditioning can enable significant speedups for important linear algebra applications.

More Details

An Analog Preconditioner for Solving Linear Systems

Proceedings - International Symposium on High-Performance Computer Architecture

Feinberg, Benjamin F.; Wong, Ryan; Xiao, Tianyao X.; Rohan, Jacob N.; Boman, Erik G.; Marinella, Matthew J.; Agarwal, Sapan A.; Ipek, Engin

Over the past decade as Moore's Law has slowed, the need for new forms of computation that can provide sustainable performance improvements has risen. A new method, called in situ computing, has shown great potential to accelerate matrix vector multiplication (MVM), an important kernel for a diverse range of applications from neural networks to scientific computing. Existing in situ accelerators for scientific computing, however, have a significant limitation: These accelerators provide no acceleration for preconditioning-A key bottleneck in linear solvers and in scientific computing workflows. This paper enables in situ acceleration for state-of-The-Art linear solvers by demonstrating how to use a new in situ matrix inversion accelerator for analog preconditioning. As existing techniques that enable high precision and scalability for in situ MVM are inapplicable to in situ matrix inversion, new techniques to compensate for circuit non-idealities are proposed. Additionally, a new approach to bit slicing that enables splitting operands across multiple devices without external digital logic is proposed. For scalability, this paper demonstrates how in situ matrix inversion kernels can work in tandem with existing domain decomposition techniques to accelerate the solutions of arbitrarily large linear systems. The analog kernel can be directly integrated into existing preconditioning workflows, leveraging several well-optimized numerical linear algebra tools to improve the behavior of the circuit. The result is an analog preconditioner that is more effective (up to 50% fewer iterations) than the widely used incomplete LU factorization preconditioner, ILU(0), while also reducing the energy and execution time of each approximate solve operation by 1025x and 105x respectively.

More Details

Controllable Reset Behavior in Domain Wall-Magnetic Tunnel Junction Artificial Neurons for Task-Adaptable Computation

IEEE Magnetics Letters

Liu, Samuel; Bennett, Christopher H.; Friedman, Joseph; Marinella, Matthew J.; Paydarfar, David; Incorvia, Jean A.

Neuromorphic computing with spintronic devices has been of interest due to the limitations of CMOS-driven von Neumann computing. Domain wall-magnetic tunnel junction (DW-MTJ) devices have been shown to be able to intrinsically capture biological neuron behavior. Edgy-relaxed behavior, where a frequently firing neuron experiences a lower action potential threshold, may provide additional artificial neuronal functionality when executing repeated tasks. In this letter, we demonstrate that this behavior can be implemented in DW-MTJ artificial neurons via three alternative mechanisms: shape anisotropy, magnetic field, and current-driven soft reset. Using micromagnetics and analytical device modeling to classify the Optdigits handwritten digit dataset, we show that edgy-relaxed behavior improves both classification accuracy and classification rate for ordered datasets while sacrificing little to no accuracy for a randomized dataset. This letter establishes methods by which artificial spintronic neurons can be flexibly adapted to datasets.

More Details
Results 26–50 of 374
Results 26–50 of 374