Publications

Results 1–50 of 104

Search results

Jump to search filters

Demonstration of >6.0-kV Breakdown Voltage in Large Area Vertical GaN p-n Diodes With Step-Etched Junction Termination Extensions

IEEE Transactions on Electron Devices

Yates, Luke; Gunning, Brendan P.; Crawford, Mary H.; Steinfeldt, Jeffrey A.; Smith, Michael L.; Abate, Vincent M.; Dickerson, Jeramy; Armstrong, Andrew A.; Binder, Andrew; Allerman, A.A.; Kaplar, Robert

Vertical gallium nitride (GaN) p-n diodes have garnered significant interest for use in power electronics where high-voltage blocking and high-power efficiency are of concern. In this article, we detail the growth and fabrication methods used to develop a large area (1 mm2) vertical GaN p-n diode capable of a 6.0-kV breakdown. We also demonstrate a large area diode with a forward pulsed current of 3.5 A, an 8.3-mΩ·cm2 differential specific ON-resistance, and a 5.3-kV reverse breakdown. In addition, we report on a smaller area diode (0.063 mm2) that is capable of 6.4-kV breakdown with a differential specific ON-resistance of 10.2 m·Ω·cm2, when accounting for current spreading through the drift region at a 45° angle. Finally, the demonstration of avalanche breakdown is shown for a 0.063-mm2 diode with a room temperature breakdown of 5.6 kV. These results were achieved via epitaxial growth of a 50-μm drift region with a very low carrier concentration of < 1×1015 cm-3 and a carefully designed four-zone junction termination extension.

More Details

A discussion on various experimental methods of impact ionization coefficient measurement in GaN

AIP Advances

Ji, Dong; Zeng, Ke; Bian, Zhengliang; Shankar, Bhawani; Gunning, Brendan P.; Binder, Andrew; Dickerson, Jeramy; Aktas, Ozgur; Anderson, Travis J.; Kaplar, Robert; Chowdhury, Srabanti

Impact ionization coefficients play a critical role in semiconductors. In addition to silicon, silicon carbide and gallium nitride are important semiconductors that are being seen more as mainstream semiconductor technologies. As a reflection of the maturity of these semiconductors, predictive modeling has become essential to device and circuit designers, and impact ionization coefficients play a key role here. Recently, several studies have measured impact ionization coefficients. We dedicated the first part of our study to comparing three experimental methods to estimate impact ionization coefficients in GaN, which are all based on photomultiplication but feature characteristic differences. The first method inserts an InGaN hole-injection layer, the accuracy of which is challenged by the dominance of ionization in InGaN, leading to possible overestimation of the coefficients. The second method utilizes the Franz-Keldysh effect for hole injection but not for electrons, where the mixed injection of induced carriers would require a margin of error. The third method uses complementary p-n and n-p structures that have been at the basis of this estimation in Si and SiC and leans on the assumption of a constant electric field, and any deviation would require a margin of error. In the second part of our study, we evaluated the models using recent experimental data from diodes demonstrating avalanche breakdown.

More Details

Analysis of the dependence of critical electric field on semiconductor bandgap

Journal of Materials Research

Slobodyan, Oleksiy; Flicker, Jack D.; Dickerson, Jeramy; Shoemaker, Jonah; Binder, Andrew; Smith, Trevor; Goodnick, Stephen; Kaplar, Robert; Hollis, Mark

Understanding of semiconductor breakdown under high electric fields is an important aspect of materials’ properties, particularly for the design of power devices. For decades, a power-law has been used to describe the dependence of material-specific critical electrical field (Ecrit) at which the material breaks down and bandgap (Eg). The relationship is often used to gauge tradeoffs of emerging materials whose properties haven’t yet been determined. Unfortunately, the reported dependencies of Ecrit on Eg cover a surprisingly wide range in the literature. Moreover, Ecrit is a function of material doping. Further, discrepancies arise in Ecrit values owing to differences between punch-through and non-punch-through device structures. We report a new normalization procedure that enables comparison of critical electric field values across materials, doping, and different device types. An extensive examination of numerous references reveals that the dependence Ecrit ∝ Eg1.83 best fits the most reliable and newest data for both direct and indirect semiconductors. Graphical abstract: [Figure not available: see fulltext.].

More Details

Progress in Fabrication and Characterization of Vertical GaN Power Devices (invited)

Kaplar, Robert; Binder, Andrew; Crawford, Mary H.; Allerman, A.A.; Gunning, Brendan P.; Flicker, Jack D.; Yates, Luke; Armstrong, Andrew A.; Dickerson, Jeramy; Glaser, Caleb E.; Steinfeldt, Jeffrey A.; Abate, Vincent M.; Smith, Michael L.; Pickrell, Gregory W.; Sharps, Paul; Anderson, T.; Gallagher, J.; Jacobs, A.G.; Koehler, A.; Tadjer, M.; Hobart, K.; Hite, J.; Ebrish, M.; Porter, M.; Zeng, K.; Chowdhury, S.; Ji, D.; Aktas, O.; Cooper, James A.

Abstract not provided.

Study of Avalanche Behavior in 3 kV GaN Vertical P-N Diode Under UIS Stress for Edge-termination Optimization

IEEE International Reliability Physics Symposium Proceedings

Shankar, Bhawani; Bian, Zhengliang; Zeng, Ke; Meng, Chuanzhe; Martinez, Rafael P.; Chowdhury, Srabanti; Gunning, Brendan P.; Flicker, Jack D.; Binder, Andrew; Dickerson, Jeramy; Kaplar, Robert

This work investigates both avalanche behavior and failure mechanism of 3 kV GaN-on-GaN vertical P-N diodes, that were fabricated and later tested under unclamped inductive switching (UIS) stress. The goal of this study is to use the particular avalanche characteristics and the failure mechanism to identify issues with the field termination and then provide feedback to improve the device design. DC breakdown is measured at the different temperatures to confirm the avalanche breakdown. Diode's avalanche robustness is measured on-wafer using a UIS test set-up which was integrated with a wafer chuck and CCD camera. Post failure analysis of the diode is done using SEM and optical microscopy to gain insight into the device failure physics.

More Details

Recent Progress in Vertical Gallium Nitride Power Devices

Kaplar, Robert; Allerman, A.A.; Crawford, Mary H.; Gunning, Brendan P.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke; Dickerson, Jeramy; Binder, Andrew; Abate, Vincent M.; Smith, Michael L.; Pickrell, Gregory W.; Sharps, Paul; Neely, Jason C.; Rashkin, Lee J.; Gill, Lee; Goodrick, Kyle; Anderson, T.; Gallagher, J.; Jacobs, A.G.; Koehler, A.; Tadjer, M.; Hobart, K.; Hite, J.; Ebrish, M.; Porter, M.; Zeng, K.; Chowdhury, S.; Ji, D.; Aktas, O.; Cooper, James A.

Abstract not provided.

Vertical GaN Devices for Medium-Voltage Power Electronics

Kaplar, Robert; Allerman, A.A.; Crawford, Mary H.; Gunning, Brendan P.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke; Dickerson, Jeramy; Binder, Andrew; Abate, Vincent M.; Smith, Michael; Pickrell, Gregory W.; Sharps, Paul; Anderson, T.; Gallagher, J.; Jacobs, A.G.; Koehler, A.; Tadjer, M.; Hobart, K.; Hite, J.; Ebrish, M.; Porter, M.; Zeng, K.; Chowdhury, S.; Ji, D.; Aktas, O.; Cooper, James A.

Abstract not provided.

Vertical GaN PN Diodes for Grid Resiliency and Medium-Voltage Power Electronics

Kaplar, Robert; Allerman, A.A.; Crawford, Mary H.; Gunning, Brendan P.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke; Dickerson, Jeramy; Binder, Andrew; Abate, Vincent M.; Smith, Michael; Pickrell, Gregory W.; Sharps, Paul; Anderson, T.; Gallagher, J.; Jacobs, A.G.; Koehler, A.; Tadjer, M.; Hobart, K.; Hite, J.; Ebrish, M.; Porter, M.; Zeng, K.; Chowdhury, S.; Ji, D.; Aktas, O.; Cooper, James A.

Abstract not provided.

Development of Vertical GaN Power Devices for Use in Electric Vehicle Drivetrains (invited)

Kaplar, Robert; Binder, Andrew; Yates, Luke; Allerman, A.A.; Crawford, Mary H.; Dickerson, Jeramy; Armstrong, Andrew A.; Glaser, Caleb E.; Steinfeldt, Bradley; Abate, Vincent M.; Foulk, James W.; Pickrell, Gregory W.; Sharps, Paul; Flicker, Jack D.; Neely, Jason C.; Rashkin, Lee J.; Gill, Lee; Goodrick, Kyle; Monson, Todd; Bock, Jonathan A.; Subramania, Ganapathi S.; Scott, Ethan; Cooper, James

Abstract not provided.

Ultra-Wide-Bandgap Semiconductors: Challenges and Opportunities (invited)

Kaplar, Robert; Allerman, A.A.; Armstrong, Andrew A.; Crawford, Mary H.; Pickrell, Gregory W.; Dickerson, Jeramy; Flicker, Jack D.; Neely, Jason C.; Paisley, Elizabeth; Baca, Albert; Klein, Brianna A.; Douglas, Erica A.; Reza, Shahed; Binder, Andrew; Yates, Luke; Slobodyan, Oleksiy; Sharps, Paul; Simmons, Jerry; Tsao, Jeffrey Y.; Hollis, Mark; Johnson, Noble; Jones, Ken; Pavlidis, Dimitris; Goretta, Ken; Nemanich, Bob; Goodnick, Steve; Chowdhury, Srabanti

Abstract not provided.

Vertical GaN Power Electronics - Opportunities and Challenges (invited)

Kaplar, Robert; Allerman, A.A.; Crawford, Mary H.; Gunning, Brendan P.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke; Dickerson, Jeramy; Binder, Andrew; Pickrell, Gregory W.; Sharps, Paul; Neely, Jason C.; Rashkin, Lee J.; Gill, L.; Anderson, T.; Gallagher, J.; Jacobs, A.; Koehler, A.; Tadjer, M.; Hobart, K.; Ebrish, M.; Porter, M.; Martinez, R.; Zeng, K.; Ji, D.; Chowdhury, S.; Aktas, O.; Cooper, James A.

Abstract not provided.

On-Wafer Investigation of Avalanche Robustness in 1.3 kV GaN-on-GaN P-N Diode under Unclamped Inductive Switching Stress

2021 IEEE 8th Workshop on Wide Bandgap Power Devices and Applications, WiPDA 2021 - Proceedings

Shankar, Bhawani; Zeng, Ke; Gunning, Brendan P.; Lee, Kwang J.; Martinez, Rafael P.; Meng, Chuanzhe; Zhou, Xin Y.; Flicker, Jack D.; Binder, Andrew; Dickerson, Jeramy; Kaplar, Robert; Chowdhury, Srabanti

This work reports an on-wafer study of avalanche behavior and failure analysis of in-house fabricated 1.3 kV GaN-on-GaN P-N diodes. DC breakdown is measured at different temperatures to confirm avalanche behavior. Diode's avalanche ruggedness is measured directly on-wafer using a modified unclamped inductive switching (UIS) test set-up with an integrated thermal chuck and high-speed CCD for real-time imaging during the test. The avalanche ruggedness of the GaN P-N diode is evaluated and compared with a commercial SiC Schottky diode of similar voltage and current rating. Failure analysis is done using SEM and optical microscopy to gain insight into the diode's failure mechanism during avalanche operation.

More Details

Etched and Regrown Vertical GaN Junction Barrier Schottky Diodes

2021 IEEE 8th Workshop on Wide Bandgap Power Devices and Applications, WiPDA 2021 - Proceedings

Binder, Andrew; Pickrell, Gregory W.; Allerman, A.A.; Dickerson, Jeramy; Yates, Luke; Steinfeldt, Jeffrey A.; Glaser, Caleb E.; Crawford, Mary H.; Armstrong, Andrew A.; Sharps, Paul; Kaplar, Robert

This work provides the first demonstration of vertical GaN Junction Barrier Schottky (JBS) rectifiers fabricated by etch and regrowth of p-GaN. A reverse blocking voltage near 1500 V was achieved at 1 mA reverse leakage, with a sub 1 V turn-on and a specific on-resistance of 10 mΩ-cm2. This result is compared to other reported JBS devices in the literature and our device demonstrates the lowest leakage slope at high reverse bias. A large initial leakage current is present near zero-bias which is attributed to a combination of inadequate etch-damage removal and passivation induced leakage current.

More Details

Development of High-Voltage Vertical GaN PN Diodes (invited)

Kaplar, Robert; Gunning, Brendan P.; Allerman, A.A.; Crawford, Mary H.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke; Binder, Andrew; Dickerson, Jeramy; Pickrell, Gregory W.; Sharps, Paul; Anderson, T.; Gallagher, J.; Jacobs, A.; Koehler, A.; Tadjer, M.; Hobart, K.; Ebrish, M.; Porter, M.; Martinez, R.; Zeng, K.; Ji, D.; Chowdhury, S.; Aktas, O.; Cooper, James A.

Abstract not provided.

Development of High-Voltage Vertical GaN PN Diodes (invited)

Kaplar, Robert; Allerman, A.A.; Crawford, Mary H.; Gunning, Brendan P.; Flicker, Jack D.; Armstrong, Andrew A.; Yates, Luke; Binder, Andrew; Dickerson, Jeramy; Pickrell, Gregory W.; Sharps, Paul; Anderson, T.; Gallagher, J.; Jacobs, A.; Koehler, A.; Tadjer, M.; Hobart, K.; Ebrish, M.; Porter, M.; Martinez, R.; Zeng, K.; Ji, D.; Chowdhury, S.; Aktas, O.; Cooper, James A.

Abstract not provided.

Simulation and Design of Step-Etched Junction Termination Extensions for GaN Power Diodes

4th Electron Devices Technology and Manufacturing Conference, EDTM 2020 - Proceedings

Dickerson, Jeramy; Binder, Andrew; Pickrell, Gregory W.; Gunning, Brendan P.; Kaplar, Robert

Proper edge termination is required to reach large blocking voltages in vertical power devices. Limitations in selective area p-type doping in GaN restrict the types of structures that can be used for this purpose. A junction termination extension (JTE) can be employed to reduce field crowding at the junction periphery where the charge in the JTE is designed to sink the critical electric field lines at breakdown. One practical way to fabricate this structure in GaN is by a step-etched single-zone or multi-zone JTE where the etch depths and doping levels are used to control the charge in the JTE. The multi-zone JTE is beneficial for increasing the process window and allowing for more variability in parameter changes while still maintaining a designed percentage of the ideal breakdown voltage. Impact ionization parameters reported in literature for GaN are compared in a simulation study to ascertain the dependence on breakdown performance. Two 3-zone JTE designs utilizing different impact ionization coefficients are compared. Simulations confirm that the choice of impact ionization parameters affects both the predicted breakdown of the device as well as the fabrication process variation tolerance for a multi-zone JTE. Regardless of the impact ionization coefficients utilized, a step-etched JTE has the potential to provide an efficient, controllable edge termination design.

More Details

III-Nitride ultra-wide-bandgap electronic devices

Semiconductors and Semimetals

Kaplar, Robert; Allerman, A.A.; Armstrong, Andrew A.; Baca, Albert G.; Crawford, Mary H.; Dickerson, Jeramy; Douglas, Erica A.; Fischer, Arthur J.; Klein, Brianna A.; Reza, Shahed

This chapter discusses the motivation for the use of Ultra-Wide-Bandgap Aluminum Gallium Nitride semiconductors for power switching and radio-frequency applications. A review of the relevant figures of merit for both vertical and lateral power switching devices, as well as lateral radio-frequency devices, is presented, demonstrating the potential superior performance of these devices relative to Gallium Nitride. Additionally, representative results from the literature for each device type are reviewed, highlighting recent progress as well as areas for further research.

More Details
Results 1–50 of 104
Results 1–50 of 104