Publications

Results 26–50 of 89

Search results

Jump to search filters

Non-Faradaic Li+ Migration and Chemical Coordination across Solid-State Battery Interfaces

Nano Letters

Gittleson, Forrest S.; El Gabaly Marquez, Farid E.

Efficient and reversible charge transfer is essential to realizing high-performance solid-state batteries. Efforts to enhance charge transfer at critical electrode-electrolyte interfaces have proven successful, yet interfacial chemistry and its impact on cell function remains poorly understood. Using X-ray photoelectron spectroscopy combined with electrochemical techniques, we elucidate chemical coordination near the LiCoO2-LIPON interface, providing experimental validation of space-charge separation. Space-charge layers, defined by local enrichment and depletion of charges, have previously been theorized and modeled, but the unique chemistry of solid-state battery interfaces is now revealed. Here we highlight the non-Faradaic migration of Li+ ions from the electrode to the electrolyte, which reduces reversible cathodic capacity by ∼15%. Inserting a thin, ion-conducting LiNbO3 interlayer between the electrode and electrolyte, however, can reduce space-charge separation, mitigate the loss of Li+ from LiCoO2, and return cathodic capacity to its theoretical value. This work illustrates the importance of interfacial chemistry in understanding and improving solid-state batteries.

More Details

HyMARC (Sandia) Annual Report

Allendorf, Mark D.; Stavila, Vitalie S.; Klebanoff, Leonard E.; Kolasinski, Robert K.; El Gabaly Marquez, Farid E.; Zhou, Xiaowang Z.; White, James L.

The Sandia HyMARC team continued its development of new synthetic, modeling, and diagnostic tools that are providing new insights into all major classes of storage materials, ranging from relatively simple systems such as PdHx and MgH2, to exceptionally complex ones, such as the metal borohydrides, as well as materials thought to be very well-understood, such as Ti-doped NaAlH4. This unprecedented suite of capabilities, capable of probing all relevant length scales within storage materials, is already having a significant impact, as they are now being used by both Seedling projects and collaborators at other laboratories within HyMARC. We expect this impact to grow as new Seedling projects begin and through collaborations with other scientists outside HyMARC. In the coming year, Sandia efforts will focus on the highest impact problems, in coordination with the other HyMARC National Laboratory partners, to provide the foundational science necessary to accelerate the discovery of new hydrogen storage materials.

More Details

Enhanced Kinetics of Electrochemical Hydrogen Uptake and Release by Palladium Powders Modified by Electrochemical Atomic Layer Deposition

ACS Applied Materials and Interfaces

Benson, David M.; Tsang, Chu F.; Sugar, Joshua D.; Jagannathan, Kaushik; Robinson, David R.; El Gabaly Marquez, Farid E.; Cappillino, Patrick J.; Stickney, John L.

Electrochemical atomic layer deposition (E-ALD) is a method for the formation of nanofilms of materials, one atomic layer at a time. It uses the galvanic exchange of a less noble metal, deposited using underpotential deposition (UPD), to produce an atomic layer of a more noble element by reduction of its ions. This process is referred to as surface limited redox replacement and can be repeated in a cycle to grow thicker deposits. It was previously performed on nanoparticles and planar substrates. In the present report, E-ALD is applied for coating a submicron-sized powder substrate, making use of a new flow cell design. E-ALD is used to coat a Pd powder substrate with different thicknesses of Rh by exchanging it for Cu UPD. Cyclic voltammetry and X-ray photoelectron spectroscopy indicate an increasing Rh coverage with increasing numbers of deposition cycles performed, in a manner consistent with the atomic layer deposition (ALD) mechanism. Cyclic voltammetry also indicated increased kinetics of H sorption and desorption in and out of the Pd powder with Rh present, relative to unmodified Pd.

More Details

Nanoscale Solid State Batteries Enabled by Thermal Atomic Layer Deposition of a Lithium Polyphosphazene Solid State Electrolyte

Chemistry of Materials

Talin, A.A.; Fuller, Elliot J.; El Gabaly Marquez, Farid E.

Several active areas of research in novel energy storage technologies, including three-dimensional solid state batteries and passivation coatings for reactive battery electrode components, require conformal solid state electrolytes. We describe an atypical atomic layer deposition (ALD) process for a member of the lithium phosphorus oxynitride (LiPON) family, which is employed as a thin film lithium-conducting solid electrolyte. The reaction between lithium tert-butoxide (LiOtBu) and diethyl phosphoramidate (DEPA) produces conformal, ionically conductive thin films with a stoichiometry close to Li2PO2N between 250 and 300 °C. Unusually, the P/N ratio of the films is always 1, indicative of a particular polymorph of LiPON that closely resembles a polyphosphazene. Films grown at 300 °C have an ionic conductivity of (6.51 ± 0.36) × 10-7 S/cm at 35 °C and are functionally electrochemically stable in the window from 0 to 5.3 V versus Li/Li+. We demonstrate the viability of the ALD-grown electrolyte by integrating it into full solid state batteries, including thin film devices using LiCoO2 as the cathode and Si as the anode operating at up to 1 mA/cm2. The high quality of the ALD growth process allows pinhole-free deposition even on rough crystalline surfaces, and we demonstrate the successful fabrication and operation of thin film batteries with ultrathin (<100 nm) solid state electrolytes. Finally, we show an additional application of the moderate-temperature ALD process by demonstrating a flexible solid state battery fabricated on a polymer substrate.

More Details

Fabrication, Testing, and Simulation of All-Solid-State Three-Dimensional Li-Ion Batteries

ACS Applied Materials and Interfaces

Talin, A.A.; Ruzmetov, Dmitry; Kolmakov, Andrei; Mckelvey, Kim; El Gabaly Marquez, Farid E.; Ware, Nicholas; Dunn, Bruce; White, Henry S.

Demonstration of three-dimensional all-solid-state Li-ion batteries (3D SSLIBs) has been a long-standing goal for numerous researchers in the battery community interested in developing high power and high areal energy density storage solutions for a variety of applications. Ideally, the 3D geometry maximizes the volume of active material per unit area, while keeping its thickness small to allow for fast Li diffusion. In this paper, we describe experimental testing and simulation of 3D SSLIBs fabricated using materials and thin-film deposition methods compatible with semiconductor device processing. These 3D SSLIBs consist of Si microcolumns onto which the battery layers are sequentially deposited using physical vapor deposition. The power performance of the 3D SSLIBs lags significantly behind that of similarly prepared planar SSLIBs. Analysis of the experimental results using finite element modeling indicates that the origin of the poor power performance is the structural inhomogeneity of the 3D SSLIB, coupled with low electrolyte ionic conductivity and diffusion rate in the cathode, which lead to highly nonuniform internal current density distribution and poor cathode utilization.

More Details
Results 26–50 of 89
Results 26–50 of 89