Emission Control with Dielectric Metasurfaces
Abstract not provided.
Abstract not provided.
This document summarily provides brief descriptions of the MELCOR code enhancement made between code revision number 18019and 21440. Revision 18019 represents the previous official code release; therefore, the modeling features described within this document are provided to assist users that update to the newest official MELCOR code release, 21440. Along with the newly updated MELCOR Users’ Guide [2] and Reference Manual [3], users are aware and able to assess the new capabilities for their modeling and analysis applications.
Abstract not provided.
Abstract not provided.
This report documents an experimental program designed to investigate High Energy Arcing Fault (HEAF) phenomena. The experiments focus on providing data to better characterize the arc to improve the prediction of arc energy emitted during a HEAF event. An open box experiment allow for direct observation of the arc, which allows diagnostic instrumentation to record the phenomenological data needed for better characterization of the arc energy source term. The data collected supports characterization of the arc and arc jet, enclosure breach, material loss, and electrical properties. These results will be used to better characterizing the hazard for improvements in fire probabilistic risk assessment (PRA) realism. The experiments were performed at KEMA Labs located in Chalfont, Pennsylvania. The experimental design, setup, and execution were completed by staff from the NRC, the National Institute of Standards and Technology (NIST), Sandia National Laboratories (SNL) and KEMA Labs. In addition, representatives from the Electric Power Research Institute (EPRI) observed some of the experimental setup and execution. The HEAF experiments were performed between August 22, 2020 and September 18, 2020 on near-identical 51 cm (20 in) cube metal boxes suspended from a Unistrut support structure. The three-phase arcing fault was initiated at the ends of the conductors oriented vertically and located at the center of the box. Either aluminum or copper conductors were used for the conductors. The low-voltage experiments used 1 000 volts AC, while the medium-voltage experiments used 6 900 volts AC consistent with other recently completed experiments. Durations of the experiment ranged from 1 s to 5 s with fault currents ranging from 1 kA to 30 kA. Real-time electrical operating conditions, including voltage, current and frequency, were measured during the experiments. Heat fluxes and incident energies were measured with plate thermometers, radiometers, and slug calorimeters at various locations around the electrical enclosures. The experiments were documented with normal and high-speed videography, infrared imaging and photography.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report documents an experimental program designed to investigate High Energy Arcing Fault (HEAF) phenomena for low-voltage metal enclosed switchgear containing aluminum conductors. This report covers full-scale laboratory experiments using representative nuclear power plant (NPP) three-phase electrical equipment. Electrical, thermal, and pressure data were recorded for each experiment and documented in this report. This report covers experiments performed on two low-voltage switchgear units with each unit consisting of two vertical sections. The data collected supports characterization of the low-voltage HEAF hazard and these results will be used to support potential improvements in fire probabilistic risk assessment (PRA) methods. The experiments were performed at KEMA Labs located in Chalfont, Pennsylvania. The experimental design, setup, and execution were completed by staff from the NRC, the National Institute of Standards and Technology (NIST), Sandia National Laboratories (SNL) and KEMA. In addition, representatives from the Electric Power Research Institute (EPRI) observed some of the experimental setup and execution. The HEAF experiments were performed between August 26 and Augsut 29, 2019 on nearidentical Westinghouse Type DS low-voltage metal-enclosed indoor switchgear. The threephase arcing fault was initiated on the aluminum main bus or in select cases on the copper bus stabs near the breaker. These experiments used either nominal 480 volts AC or 600 volts AC. Durations of the experiments ranged from approximately 0.4 s to 8.3 s with fault currents ranging from approximately 9.2 kA to 19.3 kA. Real-time electrical operating conditions, including voltage, current and frequency, were measured during the experiments. Heat fluxes and incident energies were measured with plate thermometers, radiometers, and slug calorimeters at various locations around the electrical enclosures. Environmental measurements of breakdown, conductivity and electromagnetics were also taken. The experiments were documented with normal and high-speed videography, infrared imaging and photography. The results, while limited, indicated the difficulty in maintaining and sustaining low-voltage arcs on aluminum components of sufficient duration and at a single point as observed operating experience.
The CSISAR tool is GUI based and very simple to use. The algorithms are robust, and the unique processing flows, that the user is stepped through, virtually eliminate the possibility of error in GEOINT production. An integrated data manager is a key part of the CSISAR system. This data manager keeps track of the data available to a user and informs the user of what data is available and what can be done with that data. This keeps the user from having to be trained in the nuances of the algorithms. CSISAR also has an integrated product manager, which helps the user identify, view and manage previously made products. CSISAR was originally developed in 2010-2011 as a Windows based system. It was updated in 2015 to be a Linux based system. This SAND report is intended to make the Product Description and User’s Guide for CSISAR (originally included within the software) more widely available. New is a brief addition of Linux-specific installation details.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physics of Plasmas
We report on experimental measurements of how an externally imposed magnetic field affects plasma heating by kJ-class, nanosecond laser pulses. The experiments reported here took place in gas cells analogous to magnetized liner inertial fusion targets. We observed significant changes in laser propagation and energy deposition scale lengths when a 12T external magnetic field was imposed in the gas cell. We find evidence that the axial magnetic field reduces radial electron thermal transport, narrows the width of the heated plasma, and increases the axial plasma length. Reduced thermal conductivity increases radial thermal gradients. This enhances radial hydrodynamic expansion and subsequent thermal self-focusing. Our experiments and supporting 3D simulations in helium demonstrate that magnetization leads to higher thermal gradients, higher peak temperatures, more rapid blast wave development, and beam focusing with an applied field of 12T.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.