Publications

Results 2801–2825 of 96,771

Search results

Jump to search filters

Atomistic Materials Modeling of High-Pressure Hydrogen Interactions in Ethylene Propylene Diene Monomer (EPDM) Rubber

Wilson, Mark A.; Frischknecht, Amalie F.; Brownell, Matthew P.

Elastomeric rubbers serve a vital role as sealing materials in the hydrogen storage and transport infrastructure. With applications including O-rings and hose-liners, these components are exposed to pressurized hydrogen at a range of temperatures, cycling rates, and pressure extremes. Cyclic (de)pressurization is known to degrade these materials through the process of cavitation. This readily visible failure mode occurs as a fracture or rupture of the material and is due to the oversaturated gas localizing to form gas bubbles. Computational modeling in the Hydrogen Materials Compatibility Program (H-Mat), co-led by Sandia National Laboratories and Pacific Northwest National Laboratory, employs multi-scale simulation efforts to build a predictive understanding of hydrogen-induced damage in materials. Modeling efforts within the project aim to provide insight into how to formulate materials that are less sensitive to high-pressure hydrogen-induced failure. In this document, we summarize results from atomistic molecular dynamics simulations, which make predictive assessments of the effects of compositional variations in the commonly used elastomer, ethylene propylene diene monomer (EPDM).

More Details

Activity Theory Literature Review

Greenwald-Yarnell, Megan G.; Divis, Kristin; Fleming Lindsley, Elizabeth S.; Heiden, Siobhan M.; Nyre-Yu, Megan N.; Odom, Peter W.; Pang, Michelle A.; Salmon, Madison M.; Silva, Austin R.

Complex challenges across Sandia National Laboratories' (SNL) mission areas underscore the need for systems level thinking, resulting in a better understanding of the organizational work systems and environments in which our hardware and software will be used. SNL researchers have successfully used Activity Theory (AT) as a framework to clarify work systems, informing product design, delivery, acceptance, and use. To increase familiarity with AT, a working group assembled to select key resources on the topic and generate an annotated bibliography. The resources in this bibliography are arranged in six categories: 1) An introduction to AT; 2) Advanced readings in AT; 3) AT and human computer interaction (HCI); 4) Methodological resources for practitioners; 5) Case studies; and 6) Related frameworks that have been used to study work systems. This annotated bibliography is expected to improve the reader's understanding of AT and enable more efficient and effective application of it.

More Details

Impulse Noise Sampling at 9965 - Armag

Villarreal, Lorenzo R.

One detonation test was monitored for impulse noise at Thunder Range on November 6, 2020. The TNT equivalency for this shot was 100 lbs. Ground zero for this test was located at an open area of Range 7. The Armag, where MOW were remotely located, was just south of the east end of the TR shock tube The purpose of this sampling event was to characterize the noise attenuation provided by the Armag which will be used as the primary firing location in a future test series. To determine attenuation provided by the Armag, one sound level monitor was placed inside and a second monitor was placed outside the hardened structure at the same distance from ground zero. The Armag was located 1300 feet from ground zero. Essential personnel performing these tests were remotely located inside the Armag and wore hearing protection with a minimum NRR of 23. Members of the Workforce (MOW) who are exposed to noise levels above 140 dBC, regardless of hearing protection worn, are required to be enrolled into the SNL Hearing Conservation Program which includes audiometric testing, online training (HCP100) and wearing hearing protection.

More Details

Empirical relationships between environmental factors and soil organic carbon produce comparable prediction accuracy to machine learning

Soil Science Society of America Journal

Mishra, Umakant; Yeo, Kyongmin; Adhikari, Kabindra; Riley, William J.; Hoffman, Forrest M.; Hudson, Corey

Accurate representation of environmental controllers of soil organic carbon (SOC) stocks in Earth System Model (ESM) land models could reduce uncertainties in future carbon–climate feedback projections. Using empirical relationships between environmental factors and SOC stocks to evaluate land models can help modelers understand prediction biases beyond what can be achieved with the observed SOC stocks alone. In this study, we used 31 observed environmental factors, field SOC observations (n = 6,213) from the continental United States, and two machine learning approaches (random forest [RF] and generalized additive modeling [GAM]) to (a) select important environmental predictors of SOC stocks, (b) derive empirical relationships between environmental factors and SOC stocks, and (c) use the derived relationships to predict SOC stocks and compare the prediction accuracy of simpler model developed with the machine learning predictions. Out of the 31 environmental factors we investigated, 12 were identified as important predictors of SOC stocks by the RF approach. In contrast, the GAM approach identified six (of those 12) environmental factors as important controllers of SOC stocks: potential evapotranspiration, normalized difference vegetation index, soil drainage condition, precipitation, elevation, and net primary productivity. The GAM approach showed minimal SOC predictive importance of the remaining six environmental factors identified by the RF approach. Our derived empirical relations produced comparable prediction accuracy to the GAM and RF approach using only a subset of environmental factors. The empirical relationships we derived using the GAM approach can serve as important benchmarks to evaluate environmental control representations of SOC stocks in ESMs, which could reduce uncertainty in predicting future carbon–climate feedbacks.

More Details

Impulse Noise Sampling at 9965 - 300-pound energetic experimant

Jackson, Cary J.

On October 1, 2022, sound level measurements were taken at various locations throughout Kirtland Air Force Base (KAFB) and Southeastern Albuquerque. The purpose was to support sound propagation modeling predictions and sound regulations for public exposure during the detonation of an approximately 300-pound energetic experiment. Ground Zero was located on Range 7 of Sandia Thunder Range (06647). A total of 8 measurement locations were identified (e.g., 5 on KAFB and 3 in the Southeastern Albuquerque neighborhoods).

More Details

Networked Microgrid Cybersecurity Architecture Design Guide: A New Jersey TRANSITGRID Use Case

Sangoleye, Fisayo; Johnson, Jay; Chavez, Adrian R.; Tsiropoulou, Eirini E.; Marton, Nicholas L.; Hentz, Charles R.; Yannarelli, Albert

Microgrids require reliable communication systems for equipment control, power delivery optimization, and operational visibility. To maintain secure communications, Microgrid Operational Technology (OT) networks must be defensible and cyber-resilient. The communication network must be carefully architected with appropriate cyber-hardening technologies to provide security defenders the data, analytics, and response capabilities to quickly mitigate malicious and accidental cyberattacks. In this work, we outline several best practices and technologies that can support microgrid operations (e.g., intrusion detection and monitoring systems, response tools, etc.). Then we apply these recommendations to the New Jersey TRANSITGRID use case to demonstrate how they would be deployed in practice.

More Details

Xyce™ Parallel Electronic Simulator Users' Guide (V.7.6)

Keiter, Eric R.; Russo, Thomas V.; Schiek, Richard S.; Thornquist, Heidi K.; Mei, Ting M.; Verley, Jason V.; Aadithya, Karthik V.; Schickling, Joshua D.

This manual describes the use of the Xyce™ Parallel Electronic Simulator. Xyce™ has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: (1) Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. (2) A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to develop new types of analysis without requiring the implementation of analysis-specific device models. (3) Device models that are specifically tailored to meet Sandia's needs, including some radiation-aware devices (for Sandia users only). (4) Object-oriented code design and implementation using modern coding practices. Xyce™ is a parallel code in the most general sense of the phrase—a message passing parallel implementation—which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel eficiency is achieved as the number of processors grows.

More Details

DUKE PRO STI TEST at 9965 - RANGE 1 (IMPACT NOISE). Survey Profile Report

Villarreal, Lorenzo R.

Members of the Workforce (MOW) who are exposed to noise levels above 140 dBC, regardless of hearing protection worn, are required to be enrolled into the SNL Hearing Conservation Program which includes audiometric testing, online training (HCP100) and wearing hearing protection. Based on the area impact noise sample results, the attenuation provided by the MFCP was protective for mitigating noise to levels below the ACGIH TLV of 140 dBC. The results also validated the scaled distance equation in an open-air environment as the results at K635 (864 feet) were below 140 dBC.

More Details
Results 2801–2825 of 96,771
Results 2801–2825 of 96,771