Publications

Results 90551–90600 of 99,299

Search results

Jump to search filters

Active Research Topics in Human Machine Interfaces

Mcdonald, Michael J.

This paper identifies active research topics concerning human machine interfaces for intelligent machine systems. The paper was compiled by performing a series of literature searches and organizing the information according to the author's interest in better directing his own Human Machine Interface (HMI) research. Introductory literature from outside the HMI communities is also referenced to provide context.

More Details

SETEC/Semiconductor Manufacturing Technologies Program: 1999 Annual and Final Report

Mcbrayer, John D.

This report summarizes the results of work conducted by the Semiconductor Manufacturing Technologies Program at Sandia National Laboratories (Sandia) during 1999. This work was performed by one working group: the Semiconductor Equipment Technology Center (SETEC). The group's projects included Numerical/Experimental Characterization of the Growth of Single-Crystal Calcium Fluoride (CaF{sub 2}); The Use of High-Resolution Transmission Electron Microscopy (HRTEM) Imaging for Certifying Critical-Dimension Reference Materials Fabricated with Silicon Micromachining; Assembly Test Chip for Flip Chip on Board; Plasma Mechanism Validation: Modeling and Experimentation; and Model-Based Reduction of Contamination in Gate-Quality Nitride Reactor. During 1999, all projects focused on meeting customer needs in a timely manner and ensuring that projects were aligned with the goals of the National Technology Roadmap for Semiconductors sponsored by the Semiconductor Industry Association and with Sandia's defense mission. This report also provides a short history of the Sandia/SEMATECH relationship and a brief on all projects completed during the seven years of the program.

More Details

Aspen-EE: An Agent-Based Model of Infrastructure Interdependency

Barton, Dianne C.; Eidson, Eric D.; Schoenwald, David A.; Stamber, Kevin L.; Reinert, Rhonda K.

This report describes the features of Aspen-EE (Electricity Enhancement), a new model for simulating the interdependent effects of market decisions and disruptions in the electric power system on other critical infrastructures in the US economy. Aspen-EE extends and modifies the capabilities of Aspen, an agent-based model previously developed by Sandia National Laboratories. Aspen-EE was tested on a series of scenarios in which the rules governing electric power trades were changed. Analysis of the scenario results indicates that the power generation company agents will adjust the quantity of power bid into each market as a function of the market rules. Results indicate that when two power markets are faced with identical economic circumstances, the traditionally higher-priced market sees its market clearing price decline, while the traditionally lower-priced market sees a relative increase in market clearing price. These results indicate that Aspen-EE is predicting power market trends that are consistent with expected economic behavior.

More Details

A SAR ATR algorithm based on coherent change detection

Harmony, David W.

This report discusses an automatic target recognition (ATR) algorithm for synthetic aperture radar (SAR) imagery that is based on coherent change detection techniques. The algorithm relies on templates created from training data to identify targets. Objects are identified or rejected as targets by comparing their SAR signatures with templates using the same complex correlation scheme developed for coherent change detection. Preliminary results are presented in addition to future recommendations.

More Details

Final Report for the Virtual Reliability Realization System LDRD

Dellin, Theodore A.; Henderson, Christopher L.; Toole, Edward J.

Current approaches to reliability are not adequate to keep pace with the need for faster, better and cheaper products and systems. This is especially true in high consequence of failure applications. The original proposal for the LDRD was to look at this challenge and see if there was a new paradigm that could make reliability predictions, along with a quantitative estimate of the risk in that prediction, in a way that was faster, better and cheaper. Such an approach would be based on the underlying science models that are the backbone of reliability predictions. The new paradigm would be implemented in two software tools: the Virtual Reliability Realization System (VRRS) and the Reliability Expert System (REX). The three-year LDRD was funded at a reduced level for the first year ($120K vs. $250K) and not renewed. Because of the reduced funding, we concentrated on the initial development of the expertise system. We developed an interactive semiconductor calculation tool needed for reliability analyses. We also were able to generate a basic functional system using Microsoft Siteserver Commerce Edition and Microsoft Sequel Server. The base system has the capability to store Office documents from multiple authors, and has the ability to track and charge for usage. The full outline of the knowledge model has been incorporated as well as examples of various types of content.

More Details

Advanced Production Planning Models

Jones, Dean A.; Lawton, Craig; Kjeldgaard, Edwin A.; Wright, Stephen T.

>This report describes the innovative modeling approach developed as a result of a 3-year Laboratory Directed Research and Development project. The overall goal of this project was to provide an effective suite of solvers for advanced production planning at facilities in the nuclear weapons complex (NWC). We focused our development activities on problems related to operations at the DOE's Pantex Plant. These types of scheduling problems appear in many contexts other than Pantex--both within the NWC (e.g., Neutron Generators) and in other commercial manufacturing settings. We successfully developed an innovative and effective solution strategy for these types of problems. We have tested this approach on actual data from Pantex, and from Org. 14000 (Neutron Generator production). This report focuses on the mathematical representation of the modeling approach and presents three representative studies using Pantex data. Results associated with the Neutron Generator facility will be published in a subsequent SAND report. The approach to task-based scheduling described here represents a significant addition to the literature for large-scale, realistic scheduling problems in a variety of production settings.

More Details

PICO: An Object-Oriented Framework for Branch and Bound

Hart, William E.; Phillips, Cynthia A.

This report describes the design of PICO, a C++ framework for implementing general parallel branch-and-bound algorithms. The PICO framework provides a mechanism for the efficient implementation of a wide range of branch-and-bound methods on an equally wide range of parallel computing platforms. We first discuss the basic architecture of PICO, including the application class hierarchy and the package's serial and parallel layers. We next describe the design of the serial layer, and its central notion of manipulating subproblem states. Then, we discuss the design of the parallel layer, which includes flexible processor clustering and communication rates, various load balancing mechanisms, and a non-preemptive task scheduler running on each processor. We describe the application of the package to a branch-and-bound method for mixed integer programming, along with computational results on the ASCI Red massively parallel computer. Finally we describe the application of the branch-and-bound mixed-integer programming code to a resource constrained project scheduling problem for Pantex.

More Details

ATR2000 Mercury/MPI Real-Time ATR System User's Guide

Meyer, R.H.; Doerfler, Douglas W.

The Air Force's Electronic Systems Center has funded Sandia National Laboratories to develop an Automatic Target Recognition (ATR) System for the Air Force's Joint STARS platform using Mercury Computer systems hardware. This report provides general theory on the internal operations of the Real-Time ATR system and provides some basic techniques that can be used to reconfigure the system and monitor its runtime operation. In addition, general information on how to interface an image formation processor and a human machine interface to the ATR is provided. This report is not meant to be a tutorial on the ATR algorithms.

More Details

Pointing Control System for a High Precision Flight Telescope

Bentley, Anthony E.; Wilcoxen, Jeffrey L.

A pointing control system is developed and tested for a flying gimbaled telescope. The two-axis pointing system is capable of sub-microradian pointing stability and high accuracy in the presence of large host vehicle jitter. The telescope also has high agility--it is capable of a 50-degree retarget (in both axes simultaneously) in less than 2 seconds. To achieve the design specifications, high-accuracy, high-resolution, two-speed resolvers were used, resulting in gimbal-angle measurements stable to 1.5 microradians. In addition, on-axis inertial angle displacement sensors were mounted on the telescope to provide host-vehicle jitter cancellation. The inertial angle sensors are accurate to about 100 nanoradians, but do not measure low frequency displacements below 2 Hz. The gimbal command signal includes host-vehicle attitude information, which is band-limited. This provides jitter data below 20 Hz, but includes a variable latency between 15 and 25 milliseconds. One of the most challenging aspects of this design was to combine the inertial-angle-sensor data with the less perfect information in the command signal to achieve maximum jitter reduction. The optimum blending of these two signals, along with the feedback compensation were designed using Quantitative Feedback Theory.

More Details

Lightning Induced Arcing an LDRD Report

Jorgenson, Roy E.; Warne, Larry K.

The purpose of this research was to develop a science-based understanding of the early-time behavior of electric surface arcing in air at atmospheric pressure. As a first step towards accomplishing this, we used a kinetic approach to model an electron swarm as it evolved in a neutral gas under the influence of an applied electric field. A computer code was written in which pseudo-particles, each representing some number of electrons, were accelerated by an electric field. The electric field due to the charged particles was calculated efficiently using a tree algorithm. Collision of the electrons with the background gas led to the creation of new particles through the processes of ionization and photoionization. These processes were accounted for using measured cross-section data and Monte Carlo methods. A dielectric half-space was modeled by imaging the charges in its surface. Secondary electron emission from the surface, resulting in surface charging, was also calculated. Simulation results show the characteristics of a streamer in three dimensions. A numerical instability was encountered before the streamer matured to form branching.

More Details

Massively Parallel Methods for Simulating the Phase-Field Model

Tikare, Veena

Prediction of the evolution of microstructures in weapons systems is critical to meeting the objectives of stockpile stewardship in accordance with the Nuclear Weapons Test Ban Treaty. For example, accurate simulation of microstructural evolution in solder joints, cermets, PZT power generators, etc. is necessary for predicting the performance, aging, and reliability both of individual components and of entire weapons systems. A recently developed but promising approach called the ''Phase-Field Model'' (PFM) has the potential of allowing the accurate quantitative prediction of microstructural evolution, with all the spatial and thermodynamic complexity of a real microstructure. Simulating with the PFM requires solving a set of coupled nonlinear differential equations, one for each material variable (e.g., grain orientation, phase, composition, stresses, anisotropy, etc.). While the PFM is versatile and is able to incorporate the necessary complexity for modeling real material systems, it is very computationally intensive, and it has been a difficult and major challenge to formulate an efficient algorithmic implementation of the approach. We found that second order in space algorithm is more stable and leads to more accurate results. However, the computational requirements still remain high, so we have developed a single field algorithm to reduce the computations by 2 orders of magnitude. We have created a 3-D parallel version of the basic phase-field (PF model) and benchmarked it performance. Preliminary results indicate that we will be able to run very large problems effectively with the new parallel code. Microstructural evolution in a diffusion couple was simulated using PFM to simultaneously simulate grain growth, diffusion and phase transformation. Solute drag in a variable composition material, a process no other model can simulate, was successfully simulated using the phase-field model. The phase field model was used to study the evolution of fractal high curvature structures to show that these structures have very different morphological and kinetic behaviors than those of equi-axed structures.

More Details

Application of Roll-Isolated Inertial Measurement Units to the Instrumentation of Spinning Vehicles

Beader, Mark E.

Roll-isolated inertial measurement units are developed at Sandia for use in the instrumentation, guidance, and control of rapidly spinning vehicles. Roll-isolation is accomplished by supporting the inertial instrument cluster (gyros and accelerometers) on a single gimbal, the axis of which is parallel to the vehicle's spin axis. A rotary motor on the gimbal is driven by a servo loop to null the roll gyro output, thus inertially stabilizing the gimbal and instrument cluster while the vehicle spins around it. Roll-isolation prevents saturation of the roll gyro by the high vehicle spin rate, and vastly reduces measurement errors arising from gyro scale factor and alignment uncertainties. Nine versions of Sandia-developed roll-isolated inertial measurement units have been flown on a total of 27 flight tests since 1972.

More Details

Dispersive Velocity Measurements in Heterogeneous Materials

Trott, Wayne M.; Castaeda, Jaime N.; Baer, M.R.; Chhabildas, L.C.; Knudson, Marcus D.; Davis, Jean-Paul; Asay, J.R.

In order to provide real-time data for validation of three dimensional numerical simulations of heterogeneous materials subjected to impact loading, an optically recording velocity interferometer system (ORVIS) has been adapted to a line-imaging instrument capable of generating precise mesoscopic scale measurements of spatially resolved velocity variations during dynamic deformation. Combining independently variable target magnification and interferometer fringe spacing, this instrument can probe a velocity field along line segments up to 15 mm in length. In high magnification operation, spatial resolution better than 10 {micro}m can be achieved. For events appropriate to short recording times, streak camera recording can provide temporal resolution better than 0.2 ns. A robust method for extracting spatially resolved velocity-time profiles from streak camera image data has been developed and incorporated into a computer program that utilizes a standard VISAR analysis platform. The use of line-imaging ORVIS to obtain measurements of the mesoscopic scale dynamic response of shocked samples has been demonstrated on several different classes of heterogeneous materials. Studies have focused on pressed, granular sugar as a simulant material for the widely used explosive HMX. For low-density (65% theoretical maximum density) pressings of sugar, material response has been investigated as a function of both impact velocity and changes in particle size distribution. The experimental results provide a consistent picture of the dispersive nature of the wave transmitted through these samples and reveal both transverse and longitudinal wave structures on mesoscopic scales. This observed behavior is consistent with the highly structured mesoscopic response predicted by 3-D simulations. Preliminary line-imaging ORVIS measurements on HMX as well as other heterogeneous materials such as foam and glass-reinforced polyester are also discussed.

More Details

Visualization of Information Spaces with VxInsight

Wylie, Brian N.; Boyack, Kevin W.; Davidson, George S.

VxInsight provides a visual mechanism for browsing, exploring and retrieving information from a database. The graphical display conveys information about the relationship between objects in several ways and on multiple scales. In this way, individual objects are always observed within a larger context. For example, consider a database consisting of a set of scientific papers. Imagine that the papers have been organized in a two dimensional geometry so that related papers are located close to each other. Now construct a landscape where the altitude reflects the local density of papers. Papers on physics will form a mountain range, and a different range will stand over the biological papers. In between will be research reports from biophysics and other bridging disciplines. Now, imagine exploring these mountains. If we zoom in closer, the physics mountains will resolve into a set of sub-disciplines. Eventually, by zooming in far enough, the individual papers become visible. By pointing and clicking you can learn more about papers of interest or retrieve their full text. Although physical proximity conveys a great deal of information about the relationship between documents, you can also see which papers reference which others, by drawing lines between the citing and cited papers. For even more information, you can choose to highlight papers by a particular researcher or a particular institution, or show the accumulation of papers through time, watching some disciplines explode and other stagnate. VxInsight is a general purpose tool, which enables this kind of interaction with wide variety of relational data: documents, patents, web pages, and financial transactions are just a few examples. The tool allows users to interactively browse, explore and retrieve information from the database in an intuitive way.

More Details

Final Report: Weighted Neighbor Data Mining

Carlson, Jeffrey; Muguira, Maritza R.

Data mining involves the discovery and fusion of features from large databases to establish minimal probability of error (MPE) decision and estimation models. Our approach combines a weighted nearest neighbor (WNN) decision model for classification and estimation with genetic algorithms (GA) for feature discovery and model optimization. The WNN model is used to provide a mathematical framework for adaptively discovering and fusing features into near-MPE decision algorithms. The GA is used to discover weighted features and select decision points for the WNN decision model to achieve near-MPE decisions. The performance of the WNN fusion model is demonstrated on the first of two very different problems to demonstrate its robust and practical application to a wide variety of data-mining problems. The first problem involves the isolation of factors that cause hepatitis C virus (HCV) and requires the evaluation of large databases to establish the critical features that can detect with minimal error whether a person is at risk of having HCV. This requires discovering and extracting relevant information (features) from a questionnaire database and combining (fusing) them to achieve a minimal error decision rule. The primary objective of the research is to develop a practical basis for fusing information from questionnaires administered at hospitals to identify and verify features important to isolate risk factors for HCV. The basic problem involves creating a feature database from the questionnaire information, discovering features that provide sufficient information to reliably identify when a person is at risk under conditions with uncertainties caused by recording errors and evasive tactics of people answering the questionnaire. The results of this study demonstrate the WNN fusion algorithm ability to perform in supervised learning environments. The second phase of the research project is directed at the unsupervised learning environment. In this environment the feature data is presented without any classification. Clustering algorithms are developed to partition the feature data into clusters based upon similarity measure models. After the feature data is clustered and classified the supervised WNN fusion algorithms are used to classify the data based upon the minimal probability of error decision rule.

More Details

Final Report of LDRD Project: An Electromagnetic Imaging System for Environmental Site Reconnaissance

Denison, Gary J.; Loubriel, Guillermo M.; Buttram, Malcolm T.; Rinehart, Larry F.; O'Malley, Martin W.; Zutavern, Fred J.

This report provides a summary of the LDRD project titled: An Electromagnetic Imaging System for Environmental Site Reconnaissance. The major initial challenge of this LDRD was to develop a ground penetrating radar (GPR) whose peak and average radiated power surpassed that of any other in existence. Goals were set to use such a system to detect the following: (1) disrupted soil layers where there is potential for buried waste, (2) buried objects such as 55-gallon drums at depths up to 3 m, and (3) detecting contaminated soil. Initial modeling of the problem suggested that for soil conditions similar to Puerto Rican clay loam, moisture content 10 percent (conductivity = 0.01 mhos at 350 MHz), a buried 55-gallon drum could be detected in a straightforward manner by an UWB GPR system at a depth of 3 meters. From the simulations, the highest attenuation ({minus}50 dB) was the result of scattering from a 3-m deep vertically orientated drum. A system loss of {minus}100 dB is a typical limit for all kinds of radar systems (either direct time-domain or swept frequency). The modeling work also determined that the waveshape of the pulse scattered off the buried drum would be relatively insensitive to drum orientation, and thus easier to detect with the GPR system.

More Details

Excitation and ionization in H(1s)-H(1s) collisions: II. Inclusion of electron exchange

Journal of Physics B: Atomic, Molecular and Optical Physics

Riley, Merle E.

Hydrogen atom-hydrogen atom scattering is a prototype for many of the fundamental principles of atomic collisions. In this work we present the formalism and the predictions of a time-dependent self-consistent-field description of the H + H system for scattering in the intermediate energy regime of 1-100 keV. Because of the unrestricted nature of the numerical orbital description, this method includes the effects of an unlimited basis set within each orbital. Electron exchange and a limited amount of electron correlation are included as well. We solve numerically coupled three-dimensional Schrodinger equations for the two-electron orbitals in singlet and triplet symmetries. Excitation and ionization cross sections are computed and compared with other theory and experiment. The results capture many features of the problem but illustrate a need for more quantitative experimental information concerning the H + H system in this energy range.

More Details

Coupled Thermal-Chemical-Mechanical Modeling of Validation Cookoff Experiments

Erikson, William W.; Schmitt, Robert G.

The cookoff of energetic materials involves the combined effects of several physical and chemical processes. These processes include heat transfer, chemical decomposition, and mechanical response. The interaction and coupling between these processes influence both the time-to-event and the violence of reaction. The prediction of the behavior of explosives during cookoff, particularly with respect to reaction violence, is a challenging task. To this end, a joint DoD/DOE program has been initiated to develop models for cookoff, and to perform experiments to validate those models. In this paper, a series of cookoff analyses are presented and compared with data from a number of experiments for the aluminized, RDX-based, Navy explosive PBXN-109. The traditional thermal-chemical analysis is used to calculate time-to-event and characterize the heat transfer and boundary conditions. A reaction mechanism based on Tarver and McGuire's work on RDX{sup 2} was adjusted to match the spherical one-dimensional time-to-explosion data. The predicted time-to-event using this reaction mechanism compares favorably with the validation tests. Coupled thermal-chemical-mechanical analysis is used to calculate the mechanical response of the confinement and the energetic material state prior to ignition. The predicted state of the material includes the temperature, stress-field, porosity, and extent of reaction. There is little experimental data for comparison to these calculations. The hoop strain in the confining steel tube gives an estimation of the radial stress in the explosive. The inferred pressure from the measured hoop strain and calculated radial stress agree qualitatively. However, validation of the mechanical response model and the chemical reaction mechanism requires more data. A post-ignition burn dynamics model was applied to calculate the confinement dynamics. The burn dynamics calculations suffer from a lack of characterization of the confinement for the flaw-dominated failure mode experienced in the tests. High-pressure burning rates are needed for more detailed post-ignition studies. Sub-models for chemistry, mechanical response and burn dynamics need to be validated against data from less complex experiments. The sub-models can then be used in integrated analysis for comparison with experimental data taken during integrated tests.

More Details

PS-b-PEO/Silica Films with Regular and Reverse Mesostructures of Large Characteristic Length Scales Prepared by Solvent Evaporation-Induced Self-Assembly

Yu, Kui; Brinker, C.J.; Hurd, Alan J.

Since the discovery of surfactant-templated silica by Mobil scientists in 1992, mesostructured silica has been synthesized in various forms including thin films, powders, particles, and fibers. In general, mesostructured silica has potential applications, such as in separation, catalysis, sensors, and fluidic microsystems. In respect to these potential applications, mesostructured silica in the form of thin films is perhaps one of the most promising candidates. The preparation of mesostructured silica films through preferential solvent evaporation-induced self-assembly (EISA) has recently received much attention in the laboratories. However, no amphiphile/silica films with reverse mesophases have ever been made through this EISA procedure. Furthermore, templates employed to date have been either surfactants or poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymers, such as pluronic P-123, both of which are water-soluble and alcohol-soluble. Due to their relatively low molecular weight, the templated silica films with mesoscopic order have been limited to relatively small characteristic length scales. In the present communication, the authors report a novel synthetic method to prepare mesostructured amphiphilic/silica films with regular and reverse mesophases of large characteristic length scales. This method involves evaporation-induced self-assembly (EISA) of amphiphilic polystyrene-block-poly(ethylene oxide) (PS-b-PEO) diblock copolymers. In the present study, the PS-b-PEO diblocks are denoted as, for example, PS(215)-b-PEO(100), showing that this particular sample contains 215 S repeat units and 100 EO repeat units. This PS(215)-b-PEO(100) diblock possesses high molecular weight and does not directly mix with water or alcohol. To the authors knowledge, no studies have reported the use of water-insoluble and alcohol-insoluble amphiphilic diblocks as structure-directing agents in the synthesis of mesostructured silica films through EISA. It is believed that the present system is the first to yield amphiphile/silica films with regular and reverse mesophases, as well as curved multi-bilayer mesostructures, through EISA. The ready formation of the diblock/silica films with multi-bilayer vesicular mesostructures is discussed.

More Details

Coupled Reactor Kinetics and Heat Transfer Model for Heat Pipe Cooled Reactors

Wright, Steven A.

Heat pipes are often proposed as cooling system components for small fission reactors. SAFE-300 and STAR-C are two reactor concepts that use heat pipes as an integral part of the cooling system. Heat pipes have been used in reactors to cool components within radiation tests (Deverall, 1973); however, no reactor has been built or tested that uses heat pipes solely as the primary cooling system. Heat pipe cooled reactors will likely require the development of a test reactor to determine the main differences in operational behavior from forced cooled reactors. The purpose of this paper is to describe the results of a systems code capable of modeling the coupling between the reactor kinetics and heat pipe controlled heat transport. Heat transport in heat pipe reactors is complex and highly system dependent. Nevertheless, in general terms it relies on heat flowing from the fuel pins through the heat pipe, to the heat exchanger, and then ultimately into the power conversion system and heat sink. A system model is described that is capable of modeling coupled reactor kinetics phenomena, heat transfer dynamics within the fuel pins, and the transient behavior of heat pipes (including the melting of the working fluid). The paper focuses primarily on the coupling effects caused by reactor feedback and compares the observations with forced cooled reactors. A number of reactor startup transients have been modeled, and issues such as power peaking, and power-to-flow mismatches, and loading transients were examined, including the possibility of heat flow from the heat exchanger back into the reactor. This system model is envisioned as a tool to be used for screening various heat pipe cooled reactor concepts, for designing and developing test facility requirements, for use in safety evaluations, and for developing test criteria for in-pile and out-of-pile test facilities.

More Details

Simulation of Sintering of Layered Structures

Tikare, Veena; Garino, Terry J.; Braginsky, Michael V.

An integrated approach, combining the continuum theory of sintering and Potts model based mesostructure evolution analysis, is used to solve the problem of bi-layered structure sintering. Two types of bi-layered structures are considered: layers of the same material with different initial porosity, and layers of two different materials. The effective sintering stress for the bi-layer powder sintering is derived, both at the meso- and the macroscopic levels. Macroscopic shape distortions and spatial distributions of porosity are determined as functions of the dimensionless specific time of sintering. The effect of the thickness of the layers on shrinkage, warpage, and pore-grain structure is studied. Ceramic ZnO powders are employed as a model experimental system to assess the model predictions.

More Details

The Synthesis of Structural Responses Using Experimentally Measured Frequency Response Functions and Field Test Data

Cap, Jerome S.; Nelson, Curtis F.

This paper presents an analysis technique used to generate the structural response at locations not measured during the ejection of a captive-carried store. The ejection shock event is complicated by the fact that forces may be imparted to the store at eight distinct locations. The technique derives forcing functions by combining the initial field test data for a limited number of measurement locations with Frequency Response Functions (FRFs) measured using a traditional modal-type impact (tap) test at the same locations. The derived forcing functions were then used with tap test FRFs measured at additional locations of interest to produce the desired response data.

More Details

Emerging Technologies and MOUT

Yonas, Gerold; Moy, Timothy D.

Operating in a potentially hostile city is every soldier's nightmare. The staggering complexity of the urban environment means that deadly threats--or non-combatants-may lurk behind every corner, doorway, or window. Urban operations present an almost unparalleled challenge to the modern professional military. The complexity of urban operations is further amplified by the diversity of missions that the military will be called upon to conduct in urban terrain. Peace-making and peace-keeping missions, urban raids to seize airports or WMD sites or to rescue hostages, and extended urban combat operations all present different sorts of challenges for planners and troops on the ground. Technology almost never serves as a magic bullet, and past predictions of technological miracles pile high on the ash heap of history. At the same time, it is a vital element of planning in the modern age to consider and, if possible, take advantage of emerging technologies. We believe that technologies can assist military operations in urbanized terrain (MOUT) in three primary areas, which are discussed.

More Details

Performance of a Treatment Loop for Recycling Spent Rinse Waters

Donovan, Robert P.; Timon, Robert; Debusk, Michael J.; Jones, Ronald V.; Rogers, Darell M.

This paper summarizes an evaluation of a treatment loop designed to upgrade the quality of spent rinse waters discharged from 10 wet benches located in the fab at Sandia's Microelectronics Development Laboratory (MDL). The goal of the treatment loop is to make these waters, presently being discharged to the fab's acid waste neutralization (AWN) station, suitable for recycling as feed water back into the fab's ultrapure water (UPW) plant. The MDL typically operates 2 shifts per day, 5 days per week. Without any treatment, the properties of the spent rinse waters now being collected have been shown to be compatible with recycling about 30% (50/168) of the time (weekends primarily, when the fab is idling) which corresponds to about 12% of the present water discharged from the fab to the AWN. The primary goal of adding a treatment loop is to increase the percentage of recyclable water from these 10 wet benches to near 100%, increasing the percentage of total recyclable water to near 40% of the total present fab discharge to the AWN. A second goal is to demonstrate compatibility with recycling this treated spent rinse water to the present R/O product water tank, reducing both the present volume of R/O reject water and the present load on the R/O. The approach taken to demonstrate achieving these goals is to compare all the common metrics of water quality for the treated spent rinse waters with those of the present R/O product water. Showing that the treated rinse water is equal or superior in quality to the water presently stored in the R/O tank by every metric all the time is assumed to be sufficient argument for proceeding with plans to incorporate recycling of these spent rinse waters back into MDL's R/O tank.

More Details

Review of US Nanocorp - SNL Joint Development of Thermal-Sprayed Thin-Film Cathodes for Thermal Batteries

Guidotti, Ronald A.; Reinhardt, Frederick W.

The use of plasma spray to deposit thin metal-sulfide cathode films is described in this paper. Conventional electroactive stack components in thermal batteries are constructed from pressed-powder parts that are difficult to fabricate in large diameters in thicknesses <0.010. Plasma-sprayed electrodes do not steer from this difficulty, allowing greater energy densities and specific energies to be realized. Various co-spraying agents have been found suitable for improving the mechanical as well as electrochemical properties of plasma-sprayed cathodes for thermal batteries. These electrodes generally show equal or improved performance over conventional pressed-powder electrodes. A number of areas for future growth and development of plasma-spray technology is discussed.

More Details
Results 90551–90600 of 99,299
Results 90551–90600 of 99,299