Journal of the Optical Society of America. Part B, Optical Physics
Naumann, Nicolas L.; Droenner, Leon; Carmele, Alexander; Chow, Weng W.; Kabuss, Julia
In this study, we investigate a semiconductor quantum dot as a microscopic analog of a basic optomechanical setup. We show that optomechanical features can be reproduced by the solid-state platform, arising from parallels of the underlying interaction processes, which in the optomechanical case is the radiation pressure coupling and in the semiconductor case the electron–phonon coupling. We discuss bistabilities, lasing, and phonon damping, and recover the same qualitative behaviors for the semiconductor and the optomechanical cases expected for low driving strengths. However, in contrast to the optomechanical case, distinct signatures of higher order processes arise in the semiconductor model.
In the framework of a microscopic model for intersubband gain from electrically pumped quantum-dot structures we investigate electrically pumped quantum-dots as active material for a mid-infrared quantum cascade laser. Our previous calculations have indicated that these structures could operate with reduced threshold current densities while also achieving a modal gain comparable to that of quantum well active materials. Here, we study the influence of two important quantum-dot material parameters, namely inhomogeneous broadening and quantum-dot sheet density, on the performance of a proposed quantum cascade laser design. In terms of achieving a positive modal net gain, a high quantum-dot density can compensate for moderately high inhomogeneous broadening, but at a cost of increased threshold current density. However, by minimizing quantum-dot density with presently achievable inhomogeneous broadening and total losses, significantly lower threshold densities than those reported in quantum-well quantum-cascade lasers are predicted by our theory.
In the last few decades, various solutions have been proposed to increase the modulation bandwidth and, consequently, the transmission bit-rate of semiconductor lasers. In this manuscript, we discuss a design procedure for a recently proposed laser cavity realized with the monolithic integration of two distributed Bragg reflector (DBR) lasers allowing one to extend the modulation bandwidth. Such an extension is obtained introducing in the dynamic response a photon-photon resonance (PPR) at a frequency higher than the modulation bandwidth of the corresponding single-section laser. Design guidelines will be proposed, and dynamic small and large signal simulations results, calculated using a finite difference traveling wave (FDTW) numerical simulator, will be discussed to confirm the design results. The effectiveness of the design procedure is verified in a structure with PPR frequency at 35GHz allowing one to obtain an open eye diagram for a non-return-to-zero (NRZ) digital signal up to 80 GHz. Furthermore, the investigation of the rich dynamics of this structure shows that with proper bias conditions, it is possible to obtain also a tunable self-pulsating signal in a frequency range related to the PPR design.
Chow, Weng W.; Liu, Alan Y.; Gossard, Arthur C.; Bowers, John E.
We present a method to quantify inhomogeneous broadening and nonradiative losses in quantum dot lasers by comparing the gain and spontaneous emission results of a microscopic laser theory with measurements made on 1.3 μm InAs quantum-dot lasers. Calculated spontaneous-emission spectra are first matched to those measured experimentally to determine the inhomogeneous broadening in the experimental samples. This is possible because treatment of carrier scattering at the level of quantum kinetic equations provides the homogeneously broadened spectra without use of free parameters, such as the dephasing rate. We then extract the nonradiative recombination current associated with the quantum-dot active region from a comparison of measured and calculated gain versus current relations.
This letter analyzes the proposal to mitigate the efficiency droop in solid-state light emitters by replacing InGaN light-emitting diodes (LEDs) with lasers. The argument in favor of this approach is that carrier-population clamping after the onset of lasing limits carrier loss to that at threshold, while stimulated emission continues to grow with injection current. A fully quantized (carriers and light) theory that is applicable to LEDs and lasers (above and below threshold) is used to obtain a quantitative evaluation. The results confirm the potential advantage of higher laser output power and efficiency above lasing threshold, while also indicating disadvantages including low efficiency prior to lasing onset, sensitivity of lasing threshold to temperature, and the effects of catastrophic laser failure. A solution to some of these concerns is suggested that takes advantage of recent developments in nanolasers.
Realization of efficient laser diodes with ultra-violet (UV) emission from ∼260-360 nm would enable many applications including fluorescence-based biological agent detection, sterilization, and portable water purification. While InGaN-based laser diodes are well developed down to ∼370 nm, achieving shorter UV wavelengths requires higher Al-content AlGaN alloys with increasing challenges in achieving p-type doping, strain-management, and low threading-dislocation-density (TDD) AlGaN templates. Given these challenges, few groups have reported AlGaN-based edge-emitting laser diodes (LDs) with emission < 355 nm.[1, 2] Most recently, random lasing via Anderson localization in AlGaN nanowire structures has demonstrated a novel approach to realizing deep-UV laser diodes.[3]
There is strong interest in minimizing the volume of lasers to enable ultracompact, low-power, coherent light sources. Nanowires represent an ideal candidate for such nanolasers as stand-alone optical cavities and gain media, and optically pumped nanowire lasing has been demonstrated in several semiconductor systems. Electrically injected nanowire lasers are needed to realize actual working devices but have been elusive due to limitations of current methods to address the requirement for nanowire device heterostructures with high material quality, controlled doping and geometry, low optical loss, and efficient carrier injection. In this project we proposed to demonstrate electrically injected single nanowire lasers emitting in the important UV to visible wavelengths. Our approach to simultaneously address these challenges is based on high quality III-nitride nanowire device heterostructures with precisely controlled geometries and strong gain and mode confinement to minimize lasing thresholds, enabled by a unique top-down nanowire fabrication technique.
Chow, Weng W.; Straatsma, Cameron J.E.; Anderson, Dana Z.
A model for studying atomtronic devices and circuits based on finite-temperature Bose-condensed gases is presented. The approach involves numerically solving equations of motion for atomic populations and coherences, derived using the Bose-Hubbard Hamiltonian and the Heisenberg picture. The resulting cluster expansion is truncated at a level giving balance between physics rigor and numerical demand mitigation. This approach allows parametric studies involving time scales that cover both the rapid population dynamics relevant to nonequilibrium state evolution, as well as the much longer time durations typical for reaching steady-state device operation. This model is demonstrated by studying the evolution of a Bose-condensed gas in the presence of atom injection and extraction in a double-well potential. In this configuration phase locking between condensates in each well of the potential is readily observed, and its influence on the evolution of the system is studied.
Single quantum dots (QDs) are frequently used as single-photon sources, taking advantage of the final exciton decay in a cascade that produces energetically detuned photons. We propose and analyze a new concept of single-photon source, namely, a few-QD microcavity system driven close to, but below the lasing threshold under strong excitation. Surprisingly, even for two or three QDs inside a cavity, antibunching is observed. To quantify the results, we find that a classification of single-photon emission in terms of antibunching in the autocorrelation function g(2)(0) is insufficient and more details of the photon statistics are required. Our investigations are based on a quantum-optical theory that we solve to obtain the density operator for the quantum-mechanical active medium and radiation field.