Publications

Results 1–25 of 104

Search results

Jump to search filters

Optimal Electric Grid Black Start Restoration Subject to Intentional Threats

Stamber, Kevin L.; Arguello, Bryan A.; Garrett, Richard A.; Beyeler, Walter E.; Doyle, Casey L.; Ojetola, Samuel; Schoenwald, David A.

Efficient restoration of the electric grid from significant disruptions – both natural and manmade – that lead to the grid entering a failed state is essential to maintaining resilience under a wide range of threats. Restoration follows a set of black start plans, allowing operators to select among these plans to meet the constraints imposed on the system by the disruption. Restoration objectives aim to restore power to a maximum number of customers in the shortest time. Current state-of-the-art for restoration modeling breaks the problem into multiple parts, assuming a known network state and full observability and control by grid operators. These assumptions are not guaranteed under some threats. This paper focuses on a novel integration of modeling and analysis capabilities to aid operators during restoration activities. A power flow-informed restoration framework, comprised of a restoration mixed-integer program informed by power flow models to identify restoration alternatives, interacts with a dynamic representation of the grid through a cognitive model of operator decision-making, to identify and prove an optimal restoration path. Application of this integrated approach is illustrated on exemplar systems. Validation of the restoration is performed for one of these exemplars using commercial solvers, and comparison is made between the steps and time involved in the commercial solver, and that required by the restoration optimization in and of itself, and by the operator model in acting on the restoration optimization output. Publications and proposals developed under this work, along with a path forward for additional expansion of the work, and summary of what was achieved, are also documented.

More Details

Analysis of mobility data to build contact networks for COVID-19

PLoS ONE

Klise, Katherine A.; Beyeler, Walter E.; Finley, Patrick D.; Makvandi, Monear M.

As social distancing policies and recommendations went into effect in response to COVID-19, people made rapid changes to the places they visit. These changes are clearly seen in mobility data, which records foot traffic using location trackers in cell phones. While mobility data is often used to extract the number of customers that visit a particular business or business type, it is the frequency and duration of concurrent occupancy at those sites that governs transmission. Understanding the way people interact at different locations can help target policies and inform contact tracing and prevention strategies. This paper outlines methods to extract interactions from mobility data and build networks that can be used in epidemiological models. Several measures of interaction are extracted: interactions between people, the cumulative interactions for a single person, and cumulative interactions that occur at particular businesses. Network metrics are computed to identify structural trends which show clear changes based on the timing of stay-at-home orders. Measures of interaction and structural trends in the resulting networks can be used to better understand potential spreading events, the percent of interactions that can be classified as close contacts, and the impact of policy choices to control transmission.

More Details

Sensitivity of Infrastructure Sectors to the Disruption of Commercial Electric Power

Stamber, Kevin L.; Aamir, Munaf S.; Beyeler, Walter E.; Brown, Theresa J.; Bynum, Leo B.; Corbet, Thomas F.; Flanagan, Tatiana P.; Kelic, Andjelka; Pate, Ronald; Tenney, Craig M.; Tidwell, Vincent C.

Electric power is crucial to the function of other infrastructures, as well as to the stability of the economy and the social order. Disruption of commercial electric power service, even for brief periods of time, can create significant consequences to the function of other sectors, and make living in some environments untenable. This analysis, conducted in 2017 for the United States Department of Energy (DOE) as part of the Grid Modernization Laboratory Consortium (GMLC) Initiative, focuses on describing the function of each of the other infrastructure sectors and subsectors, with an eye towards those elements of these sectors that depend on primary electric power service through the commercial electric power grid. It leverages the experience of Sandia analysts in analyzing historical disruptive events, and from the development of capabilities designed to identify the physical, logical, and geographic connectivity between infrastructures. The analysis goes on to identify alternatives for the provision of primary electric power service, and the redundancy of said alternatives, to provide a picture of the sector’s ability to withstand an extended disruption.

More Details

NFD Methodology Report

Beyeler, Walter E.; Stamber, Kevin L.; Kelic, Andjelka

The NetFlow Dynamics (NFD) model was developed for estimating the availability of a commodity supplied by a national- or regional-scale infrastructure following unexpected disruption of one or more of its components. The large scope of the disruptions of interest produce changes in availability lasting days to weeks. Consequently, the model does not resolve daily variations in system state and does not include the long-term processes that cause infrastructures to evolve as assets are added and removed according to owners ’planning decisions. NFD simulates fluid flow, including petroleum and other incompressible fluids, as well as natural gas and other compressible fluids, through pipeline networks characterized by limits on transmission capacity and storage. It was designed to enable efficient exploration of possible transmission system responses to large-scale disruptions lasting for days or longer. The model formulation reflects constraints on transmission and storage capacity imposed by the physical system assets. Those capacity limits are input parameters and are not derived from more basic system properties such as pipeline diameters and compressor power. A system’s response to a large disruption is controlled by operational decisions as well as damage to physical assets. The NFD model formulation allows users to efficiently consider alternative scenarios about the way remaining capacity might be used so that the analysis result appropriately reflects uncertainties about operator response.

More Details

Modeling efficient and equitable distribution of COVID-19 vaccines

Makvandi, Monear M.; Wallis, Laurie D.; West, Celine N.; Thelen, Haedi E.; Vanwinkle, Zane; Halkjaer-Knudsen, Vibeke N.; Laros, James H.; Beyeler, Walter E.; Klise, Katherine A.; Finley, Patrick D.

Producing and distributing COVID-19 vaccine during the pandemic is a major logistical challenge requiring careful planning and efficient execution. This report presents information on logistical, policy and technical issues relevant to rapidly fielding a COVID-19 vaccination program. For this study we (a) conducted literature review and subject matter expert elicitation to understand current vaccine manufacturing and distribution capabilities and vaccine allocation strategies, (b) designed a baseline vaccine distribution strategy and modeling strategy to provide insight into the potential for targeted distribution of limited initial vaccine supplies, and (c) developed parametric interfaces to enable vaccine distribution scenarios to be analyzed in depth with Sandias Adaptive Recovery Model that will allow us evaluate the additional sub- populations and alternative distribution scenarios from a public health benefit and associated economic disruption Principal issues, challenges, and complexities that complicate COVID-19 vaccine delivery identified in our literature and subject matter expert investigation include these items: The United States has not mounted an urgent nationwide vaccination campaign in recent history. The existing global manufacturing and distribution infrastructure are not able to produce enough vaccine for the population immediately. Vaccines, once available will be scarce resources. Prioritization for vaccine allocation will be built on existing distribution networks. Vaccine distribution may not have a universal impact on disease transmission and morbidity because of scarcity, priority population demographics, and underlying disease transmission rates. Considerations for designing a vaccine distribution strategy are discussed. A baseline distribution strategy is designed and tested using the Adaptive Recovery Model, which couples a deterministic compartmental epidemiological model and a stochastic network model. We show the impact of this vaccine distribution strategy on hospitalizations, mortality, and contact tracing requirements. This model can be used to quantitatively evaluate alternative distribution scenarios, guiding policy decisions as vaccine candidates are narrowed down.

More Details

Adaptive Recovery Model: Designing Systems for Testing Tracing and Vaccination to Support COVID-19 Recovery Planning

Beyeler, Walter E.; Laros, James H.; Klise, Katherine A.; Makvandi, Monear M.; Finley, Patrick D.

This report documents a new approach to designing disease control policies that allocate scarce testing, contact tracing, and vaccination resources to better control community transmission of COVID19 or similar diseases. The Adaptive Recovery Model (ARM) combines a deterministic compartmental disease model with a stochastic network disease propagation model to enable us to simulate COVID-19 community spread through the lens of two complementary modeling motifs. ARM contact networks are derived from cell-phone location data that have been anonymized and interpreted as individual arrivals to specic public locations. Modeling disease spread over these networks allows us to identify locations within communities conducive to rapid disease spread. ARM applies this model- and data-derived abstractions of community transmission to evaluate the effectiveness of disease control measures including targeted social distancing, contact tracing, testing and vaccination. The architecture of ARM provides a unique capacity to help decision makers understand how best to deploy scarce testing, tracing and vaccination resources to minimize disease-spread potential in a community. This document details the novel mathematical formulations underlying ARM, presents a dynamical stability analysis of the deterministic model components, a sensitivity analysis of control parameters and network structure, and summarizes a process for deriving contact networks from cell-phone location data. An example use case steps through applying ARM to evaluate three targeted social distancing policies using Bernalillo County, New Mexico as an exemplar test locale. This step-by-step analysis demonstrates how ARM can be used to measure the relative performance of competing public health policies. Initial scenario tests of ARM shows that ARMs design focus on resource utilization rather than simple incidence prediction can provide decision makers with additional quantitative guidance for managing ongoing public health emergencies and planning future responses.

More Details

Sandia's Research in Support of COVID-19 Pandemic Response: Computing and Information Sciences

Bauer, Travis L.; Beyeler, Walter E.; Finley, Patrick D.; Jeffers, Robert F.; Laird, Carl D.; Makvandi, Monear M.; Outkin, Alexander V.; Safta, Cosmin S.; Simonson, Katherine M.

This report summarizes the goals and findings of eight research projects conducted under the Computing and Information Sciences (CIS) Research Foundation and related to the COVID- 19 pandemic. The projects were all formulated in response to Sandia's call for proposals for rapid-response research with the potential to have a positive impact on the global health emergency. Six of the projects in the CIS portfolio focused on modeling various facets of disease spread, resource requirements, testing programs, and economic impact. The two remaining projects examined the use of web-crawlers and text analytics to allow rapid identification of articles relevant to specific technical questions, and categorization of the reliability of content. The portfolio has collectively produced methods and findings that are being applied by a range of state, regional, and national entities to support enhanced understanding and prediction of the pandemic's spread and its impacts.

More Details

Uncertainty Analysis Framework for the Hospital Resource Supply Model for Covid-19

Beyeler, Walter E.; Frazier, Christopher R.; Krofcheck, Daniel J.; Swiler, Laura P.; Portone, Teresa P.; Klise, Katherine A.

In March and April of 2020 there was widespread concern about availability of medical resources required to treat Covid-19 patients who become seriously ill. A simulation model of supply management was developed to aid understanding of how to best manage available supplies and channel new production. Forecasted demands for critical therapeutic resources have tremendous uncertainty, largely due to uncertainties about the number and timing of patient arrivals. It is therefore essential to evaluate any process for managing supplies in view of this uncertainty. To support such evaluations, we developed a modeling framework that would allow an integrated assessment in the context of uncertainty quantification. At the time of writing there has been no need to execute this framework because adaptations of the medical system have been able to respond effectively to the outbreak. This report documents the framework and its implemented components should need later arise for its application.

More Details

Integrated Resource Supply-Demand-Routing Model for the COVID-19 Crisis

Frazier, Christopher R.; Krofcheck, Daniel J.; Gearhart, Jared L.; Beyeler, Walter E.

As part of the Department of Energy response to the novel coronavirus disease (COVID-19) pandemic of 2020, a modeling effort was sponsored by the DOE Office of Science. Through this effort, an integrated planning framework was developed whose capabilities were demonstrated with the combination of a treatment resource demand model and an optimization model for routing supplies. This report documents this framework and models, and an application involving ventilator demands and supplies in the continental United States. The goal of this application is to test the feasibility of implementing nationwide ventilator sharing in response to the COVID-19 crisis. Multiple scenarios were run using different combinations of forecasted and observed patient streams, and it is demonstrated that using a "worst-case forecast for planning may be preferable to best mitigate supply-demand risks in an uncertain future. There is also a brief discussion of model uncertainty and its implications for the results.

More Details

Uncertainty analysis of Resource Demand Model for Covid-19

Swiler, Laura P.; Portone, Teresa P.; Beyeler, Walter E.

As part of the Department of Energy response to the novel coronavirus pandemic of 2020, a modeling effort was sponsored by the DOE Office of Science. One task of this modeling effort at Sandia was to develop a model to predict medical resource needs given various patient arrival scenarios. Resources needed include personnel resources (nurses, ICU nurses, physicians, respiratory therapists), fixed resources (regular or ICU beds and ventilators), and consumable resources (masks, gowns, gloves, face shields, sedatives). This report documents the uncertainty analysis that was performed on the resource model. The uncertainty analysis involved sampling 26 input parameters to the model. The sampling was performed conditional on the patient arrival streams that also were inputs to the model. These patient arrival streams were derived from various epidemiology models and had a significant effect on the projected resource needs. In this report, we document the sampling approach, the parameter ranges used, and the computational workflow necessary to perform large-scale uncertainty studies for every county and state in the United States.

More Details

The Grey Zone Test Range Integrated Urban Simulation Environment

Kelic, Andjelka; Beyeler, Walter E.; Mitchell, Roger M.; Bernard, Michael L.; Doyle, Casey L.; Rogers, Alisa N.; Frazier, Christopher R.; Gunda, Thushara G.; Klise, Katherine A.

Sandia National Laboratories is part of the government test and evaluation team for the Defense Advanced Research Projects Agency Collection and Monitoring via Planning for Active Situational Scenarios program. The program is designed to better understand competition in the area between peace and conventional conflict when adversary actions are subtle and difficult to detect. For the purposes of test and evaluation, Sandia conducted a range of activities for the program: creation of the Grey Zone Test Range; design of the data stream for a user experiment conducted with U.S. Indo-Pacific Command; design, implementation, and execution of the formal evaluation; and analysis and summary of the evaluation results. This report details Sandia's activities and provides additional information on the Grey Zone Test Range urban simulation environment developed to evaluate the performer technologies.

More Details

Biologically inspired approaches for biosurveillance anomaly detection and data fusion

Finley, Patrick D.; Levin, Drew L.; Flanagan, Tatiana P.; Beyeler, Walter E.; Mitchell, Michael D.; Ray, Jaideep R.; Moses, Melanie; Forrest, Stephanie

This study developed and tested biologically inspired computational methods to detect anomalous signals in data streams that could indicate a pending outbreak or bio-weapon attack. Current large-scale biosurveillance systems are plagued by two principal deficiencies: (1) timely detection of disease-indicating signals in noisy data and (2) anomaly detection across multiple channels. Anomaly detectors and data fusion components modeled after human immune system processes were tested against a variety of natural and synthetic surveillance datasets. A pilot scale immune-system-based biosurveillance system performed at least as well as traditional statistical anomaly detection data fusion approaches. Machine learning approaches leveraging Deep Learning recurrent neural networks were developed and applied to challenging unstructured and multimodal health surveillance data. Within the limits imposed of data availability, both immune systems and deep learning methods were found to improve anomaly detection and data fusion performance for particularly challenging data subsets.

More Details

Socio-behavioral considerations in the role of militant extremism

Bernard, Michael L.; Backus, George A.; Beyeler, Walter E.

This paper discusses relevant findings and theories regarding the role of ideology, culture, and context in shaping the behaviors of individuals within violent social movements. Accordingly, this focus concerns the comparative weight placed on ideology and culture (expressed principles and motives) versus external factors as chief influencers for the propensity of individuals to act outside of the norms of society and politics by resorting to violent behaviors. In doing so, we have drawn upon theory from anthropology, behavioral economics, political science, psychology, and sociology to better understand how these variables give birth to and nurture militant social movements. F u r t h e r d i s s e m i n a t i o n o n l y a s a u t h o r i z e d t o U . S . G o v e r n m e n t a g e n c i e s a n d t h e i r c o n t r a c t o r s ; o t h e r r e q u e s t s s h a l l b e a p p r o v e d b y t h e o r i g i n a t i n g f a c i l i t y o r h i g h e r D O E p r o g r a m m a t i c a u t h o r i t y .

More Details
Results 1–25 of 104
Results 1–25 of 104