Publications

Results 1–25 of 88

Search results

Jump to search filters

PE1 Site Characterization: Data Documentation on Geologic and Hydrologic Lab Testing

Wilson, Jennifer E.; Heath, Jason; Kuhlman, Kristopher L.; Xu, Guangping X.; Bodmer, Miles A.; Broome, Scott T.; Jaramillo, Johnny L.; Barrow, Perry C.; Rodriguez, Mark A.; Griego, James J.M.; Valdez, Nichole R.

This data documentation report describes geologic and hydrologic laboratory analysis and data collected in support of site characterization of the Physical Experiment 1 (PE1) testbed, Aqueduct Mesa, Nevada. The documentation includes a summary of laboratory tests performed, discussion of sample selection for assessing heterogeneity of various testbed properties, methods, and results per data type.

More Details

LYNM-PE1 Seismic Parameters from Borehole Log, Laboratory, and Tabletop Measurements

Wilson, Jennifer E.; Bodmer, Miles A.; Townsend, Margaret J.; Choens, Robert C.; Bartlett, Tara; Dietel, Matthew; Downs, Nicholas M.; Laros, James H.; Smith, Devon; Larotonda, Jennifer M.; Jaramillo, Johnny L.; Barrow, Perry C.; Kibikas, William M.; Sam, Robert C.W.P.; Broome, Scott T.; Davenport, Kathy D.

The goal of this work is to provide a database of quality-checked seismic parameters which can be integrated with the Geologic Framework Model (GFM) for the LYNM-PE1 (Low Yield Nuclear Monitoring – Physical Experiment 1) testbed. We integrated data from geophysical borehole logs, tabletop measurements on collected core, and laboratory measurements.

More Details

Computational Analysis of Coupled Geoscience Processes in Fractured and Deformable Media

Yoon, Hongkyu Y.; Kucala, Alec K.; Chang, Kyung W.; Martinez, Mario J.; Laros, James H.; Kadeethum, T.; Warren, Maria; Wilson, Jennifer E.; Broome, Scott T.; Stewart, Lauren K.; Estrada, Diana; Bouklas, Nicholas; Fuhg, Jan N.

Prediction of flow, transport, and deformation in fractured and porous media is critical to improving our scientific understanding of coupled thermal-hydrological-mechanical processes related to subsurface energy storage and recovery, nonproliferation, and nuclear waste storage. Especially, earth rock response to changes in pressure and stress has remained a critically challenging task. In this work, we advance computational capabilities for coupled processes in fractured and porous media using Sandia Sierra Multiphysics software through verification and validation problems such as poro-elasticity, elasto-plasticity and thermo-poroelasticity. We apply Sierra software for geologic carbon storage, fluid injection/extraction, and enhanced geothermal systems. We also significantly improve machine learning approaches through latent space and self-supervised learning. Additionally, we develop new experimental technique for evaluating dynamics of compacted soils at an intermediate scale. Overall, this project will enable us to systematically measure and control the earth system response to changes in stress and pressure due to subsurface energy activities.

More Details

Heterogeneous multiphase flow properties of volcanic rocks and implications for noble gas transport from underground nuclear explosions

Vadose Zone Journal

Heath, Jason; Kuhlman, Kristopher L.; Broome, Scott T.; Wilson, Jennifer E.; Malama, Bwalya

Of interest to the Underground Nuclear Explosion Signatures Experiment are patterns and timing of explosion-generated noble gases that reach the land surface. The impact of potentially simultaneous flow of water and gas on noble gas transport in heterogeneous fractured rock is a current scientific knowledge gap. This article presents field and laboratory data to constrain and justify a triple continua conceptual model with multimodal multiphase fluid flow constitutive equations that represents host rock matrix, natural fractures, and induced fractures from past underground nuclear explosions (UNEs) at Aqueduct and Pahute Mesas, Nevada National Security Site, Nevada, USA. Capillary pressure from mercury intrusion and direct air–water measurements on volcanic tuff core samples exhibit extreme spatial heterogeneity (i.e., variation over multiple orders of magnitude). Petrographic observations indicate that heterogeneity derives from multimodal pore structures in ash-flow tuff components and post-depositional alteration processes. Comparisons of pre- and post-UNE samples reveal different pore size distributions that are due in part to microfractures. Capillary pressure relationships require a multimodal van Genuchten (VG) constitutive model to best fit the data. Relative permeability estimations based on unimodal VG fits to capillary pressure can be different from those based on bimodal VG fits, implying the choice of unimodal vs. bimodal fits may greatly affect flow and transport predictions of noble gas signatures. The range in measured capillary pressure and predicted relative permeability curves for a given lithology and between lithologies highlights the need for future modeling to consider spatially distributed properties.

More Details

P- and S-Wave velocity and Indirect Tensile Measurements for Alluvium in Support of the Source Physics Experiments

Broome, Scott T.; Jaramillo, Johnny L.

Mechanical properties on alluvium blocks and core samples were determined to support the Source Physics Experiment Dry Alluvium Geology experimental series. Because material was not available directly from the experimental location, the alluvium blocks and core samples are intended to serve as surrogate material . P - and S - wave velocity was measured on cubes cut from the alluvium blocks and core with the intention to study variation from water content and measured direction (material anisotropy). Indirect tensile tests were conducted dry and with moisture ranging from 6 to 9.1%. For the range of water content tested, increasing moisture level resulted in slower P - and S - wave velocities. P - and S - wave variability is less influenced by material heterogeneity than moisture content. P - wave velocity ranges from 629 m/s to 2599 m/s and S - wave velocity ranges from 288 m/s to 1200 m/s. Counter to the velocity measurement findings, material variability on indirect tensile strength has a greater effect than moisture content. Compared to dry strength and at moisture levels from 6 to 9% the block's tensile strength was lowered by at least a factor of 5. Indirect tensile strength for the first block averaged 0.35 MPa and 0.25 MPa for dry and 8.9% moisture respectively. For the second block indirect tensile strength averaged 0.05 MPa for both dry and 6.4% moisture.

More Details

X-ray Computed Tomography on UNESE Core: FY2020 Data Report to Support Fracture and Multiphase Fluid Flow Studies

Heath, Jason; Bower, John E.; Wilson, Jennifer E.; Kuhlman, Kristopher L.; Broome, Scott T.

Natural and induced fractures are potential preferential pathways for migration of radioactive gases to earths surface from underground nuclear explosions (UNEs). This report documents X-ray computed tomography (XRCT) imaging on 26 samples of rock core that was collected to support the Underground Nuclear Explosion Signatures Experiment (UNESE) program. The XRCT datasets are intended to help fill a data gap on the three-dimensional (3D) characteristics of natural and/or induced fractures at the centimeter and smaller scale, which may strongly influence multiphase fluid flow and transport properties of preferential flow paths and interaction with the matrix of the surrounding host rock. Pre- and post-UNE rock samples were carefully chosen to enable comparison of fractures as a function of lithologic and petrophysical properties, as well as distance to the past UNEs. This report serves as documentation for the data, including an introduction with the research motivation, a methods and materials section, descriptions of the XRCT datasets without post-processing, and recommendations for 3D quantification via image analysis and digital rock physics.

More Details

The Complicated Link between Material Properties and Microfracture Density for an Underground Explosion in Granite

Journal of Geophysical Research. Solid Earth

Broome, Scott T.; Swanson, Erika; Sussman, Aviva J.

More Details

An Experimental Method to Measure Gaseous Diffusivity in Tight and Partially Saturated Porous Media via Continuously Monitored Mass Spectrometry

Transport in Porous Media

Paul, Matthew J.; Broome, Scott T.; Kuhlman, Kristopher L.; Feldman, Joshua D.; Heath, Jason

Detection of radioxenon and radioargon produced by underground nuclear explosions is one of the primary methods by which the Comprehensive Nuclear-Test–Ban Treaty (CTBT) monitors for nuclear activities. However, transport of these noble gases to the surface via barometric pumping is a complex process relying on advective and diffusive processes in a fractured porous medium to bring detectable levels to the surface. To better understand this process, experimental measurements of noble gas and chemical surrogate diffusivity in relevant lithologies are necessary. However, measurement of noble gas diffusivity in tight or partially saturated porous media is challenging due to the transparent nature of noble gases, the lengthy diffusion times, and difficulty maintaining consistent water saturation. Here, the quasi-steady-state Ney–Armistead method is modified to accommodate continuous gas sampling via effusive flow to a mass spectrometer. An analytical solution accounting for the cumulative sampling losses and induced advective flow is then derived. Experimental results appear in good agreement with the proposed theory, suggesting the presence of retained groundwater reduces the effective diffusivity of the gas tracers by 10–1000 times. Furthermore, by using a mass spectrometer, the method described herein is applicable to a broad range of gas species and porous media.

More Details

Subsurface airflow measurements before and after a small chemical explosion

54th U.S. Rock Mechanics/Geomechanics Symposium

Bauer, Stephen J.; Broome, Scott T.; Gardner, W.P.

To increase understanding of damage associated with underground explosions, a field test program was developed jointly by Sandia and Pacific Northwest National Laboratories at the EMRTC test range in Socorro, NM. The Blue Canyon Dome test site is underlain by a rhyolite that is fractured in places. The test system included deployment of a defined array of 64 probes in eight monitoring boreholes. The monitoring boreholes radially surround a central near vertical shot hole at horizontal distances of 4.6m and 7.6m in cardinal and 45 degrees offset to cardinal directions, respectively. The probes are potted in coarse sand which touches/accesses the rhyolite and are individually accessed via nylon tubing and isolated from each other by epoxy and grout sequences. Pre and post chemical explosion air flow rate measurements, conducted for ~30-45 minutes from each probe, were observed for potential change. The gas flow measurement is a function of the rock mass permeability near a probe. Much of the flow rate change is at depth station 8 (59.4m) and is in the SE quadrant. Flow rate changes are inferred to be caused by the chemical explosion which may have opened pre-existing fractures, fractured the rock and/or caused block displacements by rotations and translations. The air flow rate data acquired here may enable a relationship and/or calibration to rock damage to be developed.

More Details

Material Property Determinations of P-Tunnel Core in Support of UNESE

Broome, Scott T.; Wilson, Jennifer E.; Swanson, Erika; Sussman, Aviva J.; Jaramillo, Johnny L.; Barrow, Perry C.

A critical component of the Underground Nuclear Explosion Signatures Experiment (UNESE) program is a realistic understanding of the post-detonation processes and changes in the environment that produce observable physical and radio-chemical signatures. Rock and fracture properties are essential parameters for modeling underground nuclear explosions. In response to the need for accurate simulations of physical and radio-chemical signatures, an experimental program to determine porosity, hydrostatic and triaxial compression, and Brazilian disc tension properties of P-Tunnel core was developed and executed. This report presents the results from the experimental program. Dry porosity for P-Tunnel core ranged from 8.7%-55%. Based on hydrostatic testing, bulk modulus was shown to increase with increasing confining pressure and ranged from 1.3GPa-42.3GPa. Compressional failure envelopes, derived from wet samples, are presented for P-Tunnel lithologies. Brazilian disc tension tests were conducted on wet samples and, along with triaxial tests, are compared with dry tests from the first UNESE test bed, Barnwell. P-Tunnel core disc tension test strength varied nearly two orders of magnitude between lithologies (0.03MPa-2.77MPa). Material tested in both tension and compression is weaker wet than dry with the exception of Strongly Welded Tuff in compression which is nearly identical in compressive strength for confining pressures of OMPa and 1 OOMPa. In addition to the inherent material properties of the rocks, fractures within the samples were quantified and characterized, in order to identify differences that might be caused by the explosion-induced damage. Finally, material property determinations are linked to optical microscopy observations. The work presented here is part of a broader material characterization effort; reports are referenced within.

More Details

Material Property Determinations for Alluvium in Support of Source Physics Experiment

Broome, Scott T.; Barrow, Perry C.; Jaramillo, Johnny L.

Two blocks of alluvium were extensively tested at the Sandia National Laboratories Geomechanics laboratory. The alluvium blocks are intended to serve as surrogate material for mechanical property determinations to support the SPE DAG experimental series. From constant mean stress triaxial testing, strength failure envelopes were parameterized and are presented for each block. Modulus and stress relationships are given including bulk modulus versus mean stress, shear modulus versus shear stress, Young's modulus versus axial stress and Poisson's ratio versus axial stress. In addition, P-&S-wave velocities, and porosity, determined using helium porosimetry, were obtained on each block. Generally, both Young's modulus and Poisson's ratio increase with increasing axial stress, bulk modulus increases with increasing pressure, and increases more dramatically upon pore crush, shear modulus decreases with increasing shear stress and then appears to plateau. The Unconfined Compressive Strength for the BM is in the range of 0.5-0.6, and for SM in the range of 2.0-2.6 MPa. The confined compressive strength increases with increasing confining pressure, and the BM alluvium is significantly weaker compared to SM alluvium for mean stress levels above 8 MPa.

More Details

Diffusive Properties of UNESE Core Samples via Continuously Monitored Mass Spectroscopy

Broome, Scott T.; Paul, Matthew J.

The transport properties of porous geological media are of fundamental importance when modeling the migration of chemical and radiological species in subterranean systems. Due to their relatively high mobility, short-lived noble gas species are of particular interest as detection of these species at the surface is a tell-tale indicator of recent nuclear activity. However, determining the diffusivity of these species is challenging due to their inert and transparent nature, requiring chemically insensitive techniques, such as mass spectroscopy, to quantify noble gas concentrations. The work described herein details recent advances in the methodology for determining diffusivity on porous media and results obtained on samples relevant to the UNESE project.

More Details
Results 1–25 of 88
Results 1–25 of 88