A critical component of the Underground Nuclear Explosion Signatures Experiment (UNESE) program is a realistic understanding of the post-detonation processes and changes in the environment that produce observable physical and radio-chemical signatures. Rock and fracture properties are essential parameters for modeling underground nuclear explosions. In response to the need for accurate simulations of physical and radio-chemical signatures, an experimental program to determine porosity, hydrostatic and triaxial compression, and Brazilian disc tension properties of P-Tunnel core was developed and executed. This report presents the results from the experimental program. Dry porosity for P-Tunnel core ranged from 8.7%-55%. Based on hydrostatic testing, bulk modulus was shown to increase with increasing confining pressure and ranged from 1.3GPa-42.3GPa. Compressional failure envelopes, derived from wet samples, are presented for P-Tunnel lithologies. Brazilian disc tension tests were conducted on wet samples and, along with triaxial tests, are compared with dry tests from the first UNESE test bed, Barnwell. P-Tunnel core disc tension test strength varied nearly two orders of magnitude between lithologies (0.03MPa-2.77MPa). Material tested in both tension and compression is weaker wet than dry with the exception of Strongly Welded Tuff in compression which is nearly identical in compressive strength for confining pressures of OMPa and 1 OOMPa. In addition to the inherent material properties of the rocks, fractures within the samples were quantified and characterized, in order to identify differences that might be caused by the explosion-induced damage. Finally, material property determinations are linked to optical microscopy observations. The work presented here is part of a broader material characterization effort; reports are referenced within.
Two blocks of alluvium were extensively tested at the Sandia National Laboratories Geomechanics laboratory. The alluvium blocks are intended to serve as surrogate material for mechanical property determinations to support the SPE DAG experimental series. From constant mean stress triaxial testing, strength failure envelopes were parameterized and are presented for each block. Modulus and stress relationships are given including bulk modulus versus mean stress, shear modulus versus shear stress, Young's modulus versus axial stress and Poisson's ratio versus axial stress. In addition, P-&S-wave velocities, and porosity, determined using helium porosimetry, were obtained on each block. Generally, both Young's modulus and Poisson's ratio increase with increasing axial stress, bulk modulus increases with increasing pressure, and increases more dramatically upon pore crush, shear modulus decreases with increasing shear stress and then appears to plateau. The Unconfined Compressive Strength for the BM is in the range of 0.5-0.6, and for SM in the range of 2.0-2.6 MPa. The confined compressive strength increases with increasing confining pressure, and the BM alluvium is significantly weaker compared to SM alluvium for mean stress levels above 8 MPa.
The transport properties of porous geological media are of fundamental importance when modeling the migration of chemical and radiological species in subterranean systems. Due to their relatively high mobility, short-lived noble gas species are of particular interest as detection of these species at the surface is a tell-tale indicator of recent nuclear activity. However, determining the diffusivity of these species is challenging due to their inert and transparent nature, requiring chemically insensitive techniques, such as mass spectroscopy, to quantify noble gas concentrations. The work described herein details recent advances in the methodology for determining diffusivity on porous media and results obtained on samples relevant to the UNESE project.
Understanding the dynamic behavior of geomaterials is critical for refining modeling and simulation of applications that involve impacts or explosions. Obtaining material properties of geomaterials is challenging, particularly in tension, due to the brittle and low-strength nature of such materials. Dynamic split tension technique (also called dynamic Brazilian test) has been employed in recent decades to determine the dynamic tensile strength of geomaterials. This is primarily because the split tension method is relatively straightforward to implement in a Kolsky compression bar. Typically, investigators use the peak load reached by the specimen to calculate the tensile strength of the specimen material, which is valid when the specimen is compressed at quasi-static strain rate. However, the same assumption cannot be safely made at dynamic strain rates due to wave propagation effects. In this study, the dynamic split tension (or Brazilian) test technique is revisited. High-speed cameras and digital image correlation (DIC) were used to image the failure of the Brazilian-disk specimen to discover when the first crack occurred relative to the measured peak load during the experiment. Differences of first crack location and time on either side of the sample were compared. The strain rate when the first crack is initiated was also compared to the traditional estimation method of strain rate using the specimen stress history.
Understanding the dynamic behavior of geomaterials is critical for refining modeling and simulation of applications that involve impacts or explosions. Obtaining material properties of geomaterials is challenging, particularly in tension, due to the brittle and low-strength nature of such materials. Dynamic split tension technique (also called dynamic Brazilian test) has been employed in recent decades to determine the dynamic tensile strength of geomaterials. This is primarily because the split tension method is relatively straightforward to implement in a Kolsky compression bar. Typically, investigators use the peak load reached by the specimen to calculate the tensile strength of the specimen material, which is valid when the specimen is compressed at quasi-static strain rate. However, the same assumption cannot be safely made at dynamic strain rates due to wave propagation effects. In this study, the dynamic split tension (or Brazilian) test technique is revisited. High-speed cameras and digital image correlation (DIC) were used to image the failure of the Brazilian-disk specimen to discover when the first crack occurred relative to the measured peak load during the experiment. Differences of first crack location and time on either side of the sample were compared. The strain rate when the first crack is initiated was also compared to the traditional estimation method of strain rate using the specimen stress history.
The Nevada National Security Site (NNSS) serves as the geologic setting for a Source Physics Experiment (SPE) program. The SPE provides ground truth data to create and improve strong ground motion and seismic S-wave generation and propagation models. The NNSS was chosen as the test bed because it provides a variety of geologic settings ranging from relatively simple to very complex. Each series of SPE testing will comprise the setting and firing of explosive charges (source) placed in a central borehole at varying depths and recording ground motions in instrumented boreholes located in two rings around the source, positioned at different radii. Modeling using advanced simulation codes will be performed both before and after each test to predict ground response and to improve models based on acquired field data, respectively. A key component in the predictive capability and ultimate validation of the models is the full understanding of the intervening geology between the source and the instrumented boreholes including the geomechanical behavior of the site's rock/structural features. This report summarizes unconfined compression testing (UCS) from coreholes U-15n#12 and U-15n#13 and compares those datasets to UCS results from coreholes U-15n and U-15n#10. U-15n#12 corehole was drilled at -60° to the horizontal and U-15n#13 was drilled vertically in granitic rock (quartz monzonite) after the third SPE shot. Figure 1 illustrates at the surface, U 15n#12 and U-15n#13 coreholes were approximately 30 meters and 10 meters from the central SPE borehole (U-15n) respectively. Corehole U-15n#12 intersects the central SPE borehole (U 15n) at a core depth of 174 feet (approximately 150 feet vertical depth). The location of U 15n#12 and U-15n#13 is the site of the first, second and third SPE's, in Area 15 of the NNSS.
Dynamic Brazilian tension (DBR) tests from core hole U-15n are part of a larger material characterization effort for the Source Physics Experiment (SPE) project. This larger effort encompasses characterizing Climax Stock granite rock from the Nevada National Security Site (NNSS) both before and after each SPE shot. The current test series includes DBR tests on dry intact granite and fault material at depths of -85 and -150 ft.
Triaxial compression tests from core hole U-15n are part of a larger material characterization effort for the Source Physics Experiment (SPE) project. This larger effort encompasses characterizing Climax Stock granite rock from the Nevada National Security Site (NNSS) both before and after each SPE shot. The current test series includes triaxial compression tests on dry and saturated intact granite and fault material at 100, 200, 300, and 400 MPa confining pressure.
The Nevada National Security Site (NNSS) serves as the geologic setting for a Source Physics Experiment (SPE) program. The SPE provides ground truth data to create and improve strong ground motion and seismic S-wave generation and propagation models. The NNSS was chosen as the test bed because it provides a variety of geologic settings ranging from relatively simple to very complex. Each series of SPE testing will comprise the setting and firing of explosive charges (source) placed in a central borehole at varying depths and recording ground motions in instrumented boreholes located in two rings around the source, positioned at different radii. Modeling using advanced simulation codes will be performed both before and after each test to predict ground response and to improve models based on acquired field data, respectively. A key component in the predictive capability and ultimate validation of the models is the full understanding of the intervening geology between the source and the instrumented boreholes including the geomechanical behavior of the site's rock/structural features. This memorandum reports on an initial phase of unconfined compression testing from corehole U-15n#10. Specimens tested came from the U-15n#10 core hole, which was drilled at -60° to the horizontal in granitic rock (quartz monzonite) after the second SPE shot (SPE-2). Figure 1 illustrates at the surface, the core hole was approximately 90 feet from the central SPE borehole. Corehole U 15n#10 intersects the central SPE borehole (U-15n) at a core depth of 170 feet (approximately 150 feet vertical depth) which is within the highly damaged zone of SPE-2. The U-15n#10 location is the site of the first, second and third SPE's, in Area 15 of the NNSS.
The Nevada National Security Site (NNSS) will serve as the geologic setting for a Source Physics Experiment (SPE) program. The SPE will provide ground truth data to create and improve strong ground motion and seismic S-wave generation and propagation models. The NNSS was chosen as the test bed because it provides a variety of geologic settings ranging from relatively simple to very complex. Each series of SPE testing will comprise the setting and firing of explosive charges (source) placed in a central bore hole at varying depths and recording ground motions in instrumented bore holes located in two rings around the source positioned at different radii. Modeling using advanced simulation codes will be performed both a priori and after each test to predict ground response and to improve models based on acquired field data, respectively. A key component in the predictive capability and ultimate validation of the models is the full understanding of the intervening geology between the source and the instrumented bore holes including the geomechanical behavior of the site rock/structural features. This report presents a limited scope of work for an initial phase of primarily unconfined compression testing. Samples tested came from the U-15n core hole, which was drilled in granitic rock (quartz monzonite). The core hole was drilled at the location of the central SPE borehole, and thus represents material in which the explosive charges will be detonated. The U-15n location is the site of the first SPE, in Area 15 of the NNSS.
A critical component of the Underground Nuclear Explosion Signatures Experiment (UNESE) program is a realistic understanding of the post-detonation processes and changes in the environment that produce observable physical and radio-chemical signatures. Rock and fracture properties are essential parameters for any UNESE test bed. In response to the need for accurate modeling scenarios of these observations, an experimental program to determine the permeability and direct shear fracture properties of Barnwell core was developed. Room temperature gas permeability measurements of Barnwell core dried at 50degC yield permeability ranging from 6.24E-02 Darcys to 6.98E-08 Darcys. Friction angles from the direct shear tests vary from 28.1deg to 44.4deg for residual shear strength and average 47.9deg for peak shear strength. Cohesion averaged 3.2 psi and 13.3 psi for residual and peak shear strength values respectively. The work presented herein is the initial determination of an ongoing broader material characterization effort.
We characterize geomechanical constitutive behavior of reservoir sandstones at conditions simulating the “Cranfield” Southeast Regional Carbon Sequestration Partnership injection program. From two cores of Lower Tuscaloosa Formation, three sandstone lithofacies were identified for mechanical testing based on permeability and lithology. These include: chlorite-cemented conglomeratic sandstone (Facies A); quartz-cemented fine sandstone (Facies B); and quartz- and calcite-cemented very fine sandstone (Facies C). We performed a suite of compression tests for each lithofacies at 100 °C and pore pressure of 30 MPa, including hydrostatic compression and triaxial tests at several confining pressures. Plugs were saturated with supercritical CO2-saturated brine. Chemical environment affected the mechanical response of all three lithofacies, which experience initial plastic yielding at stresses far below estimated in situ stress. Measured elastic moduli degradation defines a secondary yield surface coinciding with in situ stress for Facies B and C. Facies A shows measurable volumetric creep strain and a failure envelope below estimates of in situ stress, linked to damage of chlorite cements by acidic pore solutions. The substantial weakening of a particular lithofacies by CO2 demonstrates a possible chemical-mechanical coupling during injection at Cranfield with implications for CO2 injection, reservoir permeability stimulation, and enhanced oil recovery.