Publications

Results 1–25 of 52

Search results

Jump to search filters

Scoping Thermal Response Calculations of RNS Waste During Transport to and Disposal at the WIPP

Figueroa Faria, Victor G.; Clutz, Christopher J.R.; Ammerman, Douglas J.; Starr, Michael J.

Sandia National Laboratories (SNL) was contracted by the United States Department of Energy Environmental Management (DOE-EM), Los Alamos Field Office to perform mechanical and thermal scoping calculations as part of a study seeking to understand the ignitability risk of the Remediated Nitrate Salts (RNS) waste drums during transportation from the Waste Control Specialists (WCS) facility to Waste Isolation Pilot Plant (WIPP) and permanent disposal of the waste at WIPP. The scoping thermal simulations described in this report pertain to thermal calculations performed with a packaging system consisting of one Standard Waste Box (SWB) loaded with drums placed inside a Standard Large Box 2 (SLB2). During transportation, the SLB2 is inside Transuranic Package Transporter Model III (TRUPACT-III), which provides the third layer of the packaging. Once at the WIPP, it is assumed the SLB2 is extracted from the TRUPACT-III and maintained above ground, and then subsequently placed underground for permanent disposal. In these proposed configurations, the space between the SLB2 and the SWB is always filled by a layer of insulation consisting of air-filled glass microbubbles except for the bottom which rests directly on the SLB2. The thermal scoping calculations described in this report specifically address whether the introduction of external heat inputs, combined with the contributions from the internally generated radiolytic decay heat and chemical reactions, lead to an unstable thermal state during the time of its movement and placement in the permanent disposal location. The external heat inputs are of two forms: 1) ambient thermal irradiation (e.g., solar and ambient storage/disposal temperatures) and 2) accident-induced fire. Three scoping calculation scenarios were derived as representative, conservative scenarios: 1A) TRUPACT-III transient transportation, 1B) SLB2 48-hour outdoor storage with solar radiation, and 2) fully-engulfing fire during SLB2 handling or emplacement following a steady-state analysis in a 38 °C environment. All the simulated scenarios are conservative relative to the operational conditions expected for handling the waste package during transportation and placement in the WIPP underground disposal unit. The predictions obtained from simulating the three exposure scenarios revealed that adding the SLB2 and the air-filled glass microbubbles to the transport and storage/disposal configurations provides additional thermal protection of the drums beyond what the SWB provides alone, both during long-term above ground insolation and underground during a fire accident. Under the current transportation/storage/disposal concepts, the degree of protection provided by the packaging concept is sufficient to prevent the waste from being ignitable. The simulation results demonstrate that there is adequate margin to safely transport and place the RNS waste from WCS to the WIPP under the current operational concept.

More Details

Defining component environments and margin through zemblanic consideration of function spaces

Conference Proceedings of the Society for Experimental Mechanics Series

Starr, Michael J.; Segalman, Daniel J.

Historically the qualification process for vehicles carrying vulnerable components has centered around the Shock Response Spectrum (SRS) and qualification consisted of devising a collection of tests whose collective SRS enveloped the qualification SRS. This involves selecting whatever tests are convenient that will envelope the qualification SRS over at least part of its spectrum; this selection is without any consideration of the details of structural response or the nature of anticipated failure of its components. It is asserted that this approach often leads to over-testing, however, as has been pointed out several times in the literature, this approach may not even be conservative. Given the advances in computational and experimental technology in the last several decades, it would be appropriate to seek some strategy of test selection that does account for structural response and failure mechanism and that pushes against the vulnerabilities of that specific structure. A strategy for such a zemblanic (zemblanity is the opposite of serendipity, the faculty of making unhappy, unlucky and expected discoveries by design) approach is presented.

More Details

Nuclear Risk Assessment 2019 Update for the Mars 2020 Mission Environmental Impact Statement

Clayton, Daniel J.; Wilkes, John; Starr, Michael J.; Ehrhart, Brian D.; Mendoza, Hector M.; Ricks, Allen J.; Villa, Daniel V.; Potter, Donald L.; Dinzl, Derek J.; Fulton, John F.; Laros, James H.; Cochran, Lainy D.; Brooks, Dusty M.

In the summer of 2020, the National Aeronautics and Space Administration (NASA) plans to launch a spacecraft as part of the Mars 2020 mission. The rover on the proposed spacecraft will use a Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) to provide continuous electrical and thermal power for the mission. The MMRTG uses radioactive plutonium dioxide. NASA is preparing a Supplemental Environmental Impact Statement (SEIS) for the mission in accordance with the National Environmental Policy Act. This Nuclear Risk Assessment addresses the responses of the MMRTG option to potential accident and abort conditions during the launch opportunity for the Mars 2020 mission and the associated consequences. This information provides the technical basis for the radiological risks discussed in the SEIS.

More Details

Comparison of time-domain objective functions in dynamic fixture optimization

Conference Proceedings of the Society for Experimental Mechanics Series

Starr, Michael J.; Walsh, Timothy W.

Differences in impedance are usually observed when components are tested in fixtures at lower levels of assembly from those in which they are fielded. In this work, the Kansas City National Security Campus (KCNSC) test bed hardware geometry is used to explore the sensitivity of the form of the objective function on the adequate reproduction of relevant response characteristics at the next level of assembly. Inverse methods within Sandia National Laboratories’ Sierra/SD code suite along with the Rapid Optimization Library (ROL) are used for identifying an unknown material (variable shear and bulk modulus) distributed across a predefined fixture volume. Comparisons of the results between time-domain based objective functions are presented. The development of the objective functions, solution sensitivity, and solution convergence will be discussed in the context of the practical considerations required for creating a realizable set of test hardware based on the variable-modulus optimized solutions.

More Details

The challenge of dynamic similarity assessment

Conference Proceedings of the Society for Experimental Mechanics Series

Moya, Adam C.; Harvie, Julie M.; Starr, Michael J.

Throughout the development cycle of structural components or assemblies that require new and unproven manufacturing techniques, the issue of unit to unit variability inevitably arises. The challenge of defining dynamic similarity between units is a problem that is often overlooked or forgotten, but can be very important depending on the functional criteria of the final product. This work aims to provide some guidance on the approach to such a problem, utilizing different methodologies from the modal and vibration testing community. Expanding on previous efforts, a non-intrusive dynamic characterization test is defined to assess similarity on an assembly that is currently being developed. As the assembly is qualified through various test units, the same data sets are taken to build a database of “similarity” data. The work presented here will describe the challenges observed with defining similarity metrics on a multi-body structure with a limited quantity of test units. Also, two statistical characterizations of dynamic FRFs are presented from which one may choose criterion based on some judgment to establish whether units are in or out of family. The methods may be used when the “intended purpose” or “functional criteria” are unknown.

More Details

Force Reconstruction from Ejection Tests of Stores from Aircraft Used for Model Predictions and Missing/Bad Gages

Ross, Michael R.; Cap, Jerome S.; Starr, Michael J.; Urbina, Angel U.; Brink, Adam R.

One of the more severe environments for a store on an aircraft is during the ejection of the store. During this environment it is not possible to instrument all component responses, and it is also likely that some instruments may fail during the environment testing. This work provides a method for developing these responses from failed gages and uninstrumented locations. First, the forces observed by the store during the environment are reconstructed. A simple sampling method is used to reconstruct these forces given various parameters. Then, these forces are applied to a model to generate the component responses. Validation is performed on this methodology.

More Details

Application of viscous and iwan modal damping models to experimental measurements from bolted structures

Journal of Vibration and Acoustics

Deaner, Brandon J.; Allen, Matthew S.; Starr, Michael J.; Segalman, Daniel J.; Sumali, Hartono S.

Measurements are presented from a two-beam structure with several bolted interfaces in order to characterize the nonlinear damping introduced by the joints. The measurements (all at force levels below macroslip) reveal that each underlying mode of the structure is well approximated by a single degree-of-freedom (SDOF) system with a nonlinear mechanical joint. At low enough force levels, the measurements show dissipation that scales as the second power of the applied force, agreeing with theory for a linear viscously damped system. This is attributed to linear viscous behavior of the material and/or damping provided by the support structure. At larger force levels, the damping is observed to behave nonlinearly, suggesting that damping from the mechanical joints is dominant. A model is presented that captures these effects, consisting of a spring and viscous damping element in parallel with a four-parameter Iwan model. The parameters of this model are identified for each mode of the structure and comparisons suggest that the model captures the stiffness and damping accurately over a range of forcing levels.

More Details

Proceedings of the Third International Workshop on Jointed Structures

Starr, Michael J.; Brake, Matthew R.; Segalman, Daniel J.

The Third International Workshop on Jointed Structures was held from August 16th to 17th, 2012, in Chicago Illinois, following the ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Thirty two researchers from both the United States and international locations convened to discuss the recent progress of mechanical joints related research and associated efforts in addition to developing a roadmap for the challenges to be addressed over the next five to ten years. These proceedings from the workshop include the minutes of the discussions and follow up from the 2009 workshop [1], presentations, and outcomes of the workshop. Specifically, twelve challenges were formulated from the discussions at the workshop, which focus on developing a better understanding of uncertainty and variability in jointed structures, incorporating high fidelity models of joints in simulations that are tractable/efficient, motivating a new generation of researchers and funding agents as to the importance of joint mechanics research, and developing new insights into the physical phenomena that give rise to energy dissipation in jointed structures. The ultimate goal of these research efforts is to develop a predictive model of joint mechanics.

More Details

Strategies for analyzing random vibration of jointed structures

Proceedings of the ASME Design Engineering Technical Conference

Segalman, Daniel J.; Starr, Michael J.; Guthrie, Michael A.

Development of mathematical models for built-up struc-tures, particularly those with many interfaces, is still primitive. This limitation is particularly evident when complex loads and load histories are considered, an example of which is random vibration. Two steps in simplifying this problem are explored here. First, the system response is approximated as that of the super-position of numerous decoupled modes, the coordinates of which evolve according to a constitutive model designed to capture the nonlinearity of the structure. Second, because among the cat-egories of load for which dynamic analysis on nonlinear struc-tures is particularly difficult is that of random loads and the re-sulting random vibration, and given the previous approximation, it is natural to apply the method of stochastic equivalent lin-earization to the governing equation of each mode. Both of these approximations are explored for the case where the nonlinear behavior of the interfaces is represented by a Masing-Prandtl-Ishlinskii-Iwan model employing a Palmov kernel. Copyright © 2013 by ASME.

More Details
Results 1–25 of 52
Results 1–25 of 52