Publications

Results 51–100 of 123

Search results

Jump to search filters

The effect of laser entrance hole foil thickness on MagLIF-relevant laser preheat

Physics of Plasmas

Harvey-Thompson, Adam J.; Weis, Matthew R.; Ruiz, Daniel E.; Wei, M.S.; Sefkow, A.B.; Nagayama, Taisuke; Campbell, E.M.; Fooks, J.A.; Glinsky, Michael E.; Peterson, K.J.

The magnetized liner inertial fusion (MagLIF) scheme relies on coupling laser energy into an underdense fuel raising the fuel adiabat at the start of the implosion. To deposit energy into the fuel, the laser must first penetrate a laser entrance hole (LEH) foil which can be a significant energy sink and introduce mix. In this paper, we report on experiments investigating laser energy coupling into MagLIF-relevant gas cell targets with LEH foil thicknesses varying from 0.5 μm to 3 μm. Two-dimensional (2D) axisymmetric simulations match the experimental results well for 0.5 μm and 1 μm thick LEH foils but exhibit whole-beam self-focusing and excessive penetration of the laser into the gas for 2 μm and 3 μm thick LEH foils. Better agreement for the 2 μm-thick foil is found when using a different thermal conductivity model in 2D simulations, while only 3D Cartesian simulations come close to matching the 3 μm-thick foil experiments. The study suggests that simulations may over-predict the tendency for the laser to self-focus during MagLIF preheat when thicker LEH foils are used. This effect is pronounced with 2D simulations where the azimuthally symmetric density channel effectively self-focuses the rays that are forced to traverse the center of the plasma. The extra degree of freedom in 3D simulations significantly reduces this effect. The experiments and simulations also suggest that, in this study, the amount of energy coupled into the gas is highly correlated with the laser propagation length regardless of the LEH foil thickness.

More Details

Narrowband Self-Emission X-ray Imaging of MagLIF Targets on Z

Gomez, Matthew R.; Fein, Jeffrey R.; Hansen, Stephanie B.; Harvey-Thompson, Adam J.; Dunham, G.S.; Knapp, P.F.; Slutz, Stephen A.; Weis, Matthew R.; Jennings, Christopher A.; Robertson, G.K.; Speas, Christopher S.; Maurer, Andrew J.; Ampleford, David J.; Rochau, G.A.; Doron, R.; O Nedostup, E.; Stambulchik; Zarnitsky, Y.; Maron, Y.; Paguio, Reny; Tomlinson, Kurt; Huang, H.; Smith, Gary; Taylor, Randy

Abstract not provided.

Performance Scaling in Magnetized Liner Inertial Fusion Experiments

Physical Review Letters

Gomez, Matthew R.; Slutz, Stephen A.; Jennings, Christopher A.; Ampleford, David J.; Weis, Matthew R.; Myers, Clayton; Yager-Elorriaga, David A.; Hahn, K.D.; Hansen, Stephanie B.; Harding, Eric H.; Harvey-Thompson, Adam J.; Lamppa, Derek C.; Mangan, Michael A.; Knapp, P.F.; Awe, Thomas J.; Chandler, Gordon A.; Cooper, Gary; Fein, Jeffrey R.; Geissel, Matthias; Glinsky, Michael E.; Foulk, James W.; Ruiz, C.L.; Ruiz, Daniel E.; Savage, Mark E.; Schmit, Paul; Smith, Ian C.; Styron, J.D.; Porter, John L.; Jones, Brent M.; Mattsson, Thomas; Peterson, K.J.; Rochau, G.A.; Sinars, Daniel

We present experimental results from the first systematic study of performance scaling with drive parameters for a magnetoinertial fusion concept. In magnetized liner inertial fusion experiments, the burn-averaged ion temperature doubles to 3.1 keV and the primary deuterium-deuterium neutron yield increases by more than an order of magnitude to 1.1×1013 (2 kJ deuterium-tritium equivalent) through a simultaneous increase in the applied magnetic field (from 10.4 to 15.9 T), laser preheat energy (from 0.46 to 1.2 kJ), and current coupling (from 16 to 20 MA). Individual parametric scans of the initial magnetic field and laser preheat energy show the expected trends, demonstrating the importance of magnetic insulation and the impact of the Nernst effect for this concept. A drive-current scan shows that present experiments operate close to the point where implosion stability is a limiting factor in performance, demonstrating the need to raise fuel pressure as drive current is increased. Simulations that capture these experimental trends indicate that another order of magnitude increase in yield on the Z facility is possible with additional increases of input parameters.

More Details

Update on MagLIF preheat experiments

Harvey-Thompson, Adam J.; Geissel, Matthias; Weis, Matthew R.; Galloway, Benjamin R.; Fein, Jeffrey R.; Awe, Thomas J.; Crabtree, J.A.; Ampleford, David J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Hanson, J.; Harding, Eric H.; Jennings, Christopher A.; Kimmel, Mark; Perea, Lawrence; Peterson, K.J.; Porter, James D.; Rambo, Patrick K.; Robertson, G.K.; Ruiz, Daniel E.; Schwarz, Jens; Shores, Jonathon; Slutz, Stephen A.; Smith, Ian C.; York, A.; Paguio, R.R.; Smith, G.E.; Maudlin, M.; Pollock, B.

Abstract not provided.

Temperature distributions and gradients in laser-heated plasmas relevant to magnetized liner inertial fusion

Physical Review E

Harding, Eric H.; Harvey-Thompson, Adam J.; Geissel, Matthias; Weis, Matthew R.; Hansen, Stephanie B.; Peterson, K.J.; Rochau, G.A.; Carpenter, K.R.; Mancini, R.C.

We present two-dimensional temperature measurements of magnetized and unmagnetized plasma experiments performed at Z relevant to the preheat stage in magnetized liner inertial fusion. The deuterium gas fill was doped with a trace amount of argon for spectroscopy purposes, and time-integrated spatially resolved spectra and narrow-band images were collected in both experiments. The spectrum and image data were included in two separate multiobjective analysis methods to extract the electron temperature spatial distribution Te(r,z). The results indicate that the magnetic field increases Te, the axial extent of the laser heating, and the magnitude of the radial temperature gradients. Comparisons with simulations reveal that the simulations overpredict the extent of the laser heating and underpredict the temperature. Temperature gradient scale lengths extracted from the measurements also permit an assessment of the importance of nonlocal heat transport.

More Details

Magnetic field impact on the laser heating in MagLIF

Physics of Plasmas

Carpenter, K.R.; Mancini, R.C.; Harding, Eric H.; Harvey-Thompson, Adam J.; Geissel, Matthias; Weis, Matthew R.; Hansen, Stephanie B.; Peterson, K.J.; Rochau, G.A.

Prior to implosion in Magnetized Liner Inertial Fusion (MagLIF), the fuel is heated to temperatures on the order of several hundred eV with a multi-kJ, multi-ns laser pulse. We present two laser heated plasma experiments, relevant to the MagLIF preheat stage, performed at Z with beryllium liners filled with deuterium and a trace amount of argon. In one experiment, there is no magnetic field and, in the other, the liner and fuel are magnetized with an 8.5 T axial magnetic field. The recorded time integrated, spatially resolved spectra of the Ar K-shell emission are sensitive to electron temperature Te. Individual analysis of the spatially resolved spectra produces electron temperature distributions Te(z) that are resolved along the axis of laser propagation. In the experiment with magnetic field, the plasma reaches higher temperatures and the heated region extends deeper within the liner than in the unmagnetized case. Radiation magnetohydrodynamics simulations of the experiments are presented and post-processed. A comparison of the results from experimental and simulated data reveals that the simulations underpredict Te in both cases but the differences are larger in the case with magnetic field.

More Details

Quantification of MagLIF Morphology using the Mallat Scattering Transformation

Glinsky, Michael E.; Moore, Thomas; Foulk, James W.; Weis, Matthew R.; Jennings, Christopher A.; Ampleford, David J.; Harding, Eric H.; Knapp, P.F.; Gomez, Matthew R.; Lussiez, Sophia E.

The morphology of the stagnated plasma resulting from Magnetized Liner Inertial Fusion (MagLIF) is measured by imaging the self-emission x-rays coming from the multi-keV plasma, and the evolution of the imploding liner is measured by radiographs. Equivalent diagnostic response can be derived from integrated rad-MHD simulations from programs such as Hydra and Gorgon. There have been only limited quantitative ways to compare the image morphology, that is the texture, of simulations and experiments. We have developed a metric of image morphology based on the Mallat Scattering Transformation (MST), a transformation that has proved to be effective at distinguishing textures, sounds, and written characters. This metric has demonstrated excellent performance in classifying ensembles of synthetic stagnation images. We use this metric to quantitatively compare simulations to experimental images, cross experimental images, and to estimate the parameters of the images with uncertainty via a linear regression of the synthetic images to the parameter used to generate them. This coordinate space has proved very adept at doing a sophisticated relative back-ground subtraction in the MST space. This was needed to compare the experimental self emission images to the rad-MHD simulation images. We have also developed theory that connects the transformation to the causal dynamics of physical systems. This has been done from the classical kinetic perspective and from the field theory perspective, where the MST is the generalized Green's function, or S-matrix of the field theory in the scale basis. From both perspectives the first order MST is the current state of the system, and the second order MST are the transition rates from one state to another. An efficient, GPU accelerated, Python implementation of the MST was developed. Future applications are discussed.

More Details

The Impact on Mix of Different Preheat Protocols

Harvey-Thompson, Adam J.; Geissel, Matthias; Jennings, Christopher A.; Weis, Matthew R.; Ampleford, David J.; Bliss, David E.; Chandler, Gordon A.; Fein, Jeffrey R.; Galloway, Benjamin R.; Glinsky, Michael E.; Gomez, Matthew R.; Hahn, K.D.; Hansen, Stephanie B.; Harding, Eric H.; Kimmel, Mark; Knapp, P.F.; Perea, Lawrence; Peterson, Kara J.; Porter, John L.; Rambo, Patrick K.; Robertson, G.K.; Rochau, G.A.; Ruiz, Daniel E.; Schwarz, Jens; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Whittemore, Kelly A.; Woodbury, Daniel; Smith, G.E.

Abstract not provided.

Progress in Implementing High-Energy Low-Mix Laser Preheat for MagLIF

Harvey-Thompson, Adam J.; Geissel, Matthias; Jennings, Christopher A.; Weis, Matthew R.; Ampleford, David J.; Bliss, David E.; Chandler, Gordon A.; Fein, Jeffrey R.; Galloway, Benjamin R.; Glinsky, Michael E.; Gomez, Matthew R.; Hahn, K.D.; Hansen, Stephanie B.; Harding, Eric H.; Kimmel, Mark; Knapp, P.F.; Perea, Lawrence; Peterson, Kara J.; Porter, John L.; Rambo, Patrick K.; Robertson, G.K.; Rochau, G.A.; Ruiz, Daniel E.; Schwarz, Jens; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Whittemore, Kelly A.; Woodbury, Daniel; Smith, G.E.

Abstract not provided.

Stagnation performance scaling of Magnetized Liner Inertial Fusion

Gomez, Matthew R.; Yager-Elorriaga, David A.; Myers, Clayton; Slutz, Stephen A.; Weis, Matthew R.; Jennings, Christopher A.; Lamppa, Derek C.; Harvey-Thompson, Adam J.; Geissel, Matthias; Knapp, P.F.; Harding, Eric H.; Hansen, Stephanie B.; Mangan, Michael A.; Ruiz, Carlos L.; Chandler, Gordon A.; Webb, Timothy J.; Moore, Thomas; Laity, George R.; Ampleford, David J.; Peterson, K.J.; Rochau, G.A.; Sinars, Daniel

Abstract not provided.

Constraining preheat energy deposition in MagLIF experiments with multi-frame shadowgraphy

Physics of Plasmas

Harvey-Thompson, Adam J.; Geissel, Matthias; Jennings, Christopher A.; Weis, Matthew R.; Foulk, James W.; Fein, Jeffrey R.; Ampleford, David J.; Chandler, Gordon A.; Glinsky, Michael E.; Hahn, K.D.; Hansen, Stephanie B.; Harding, Eric H.; Knapp, P.F.; Paguio, R.R.; Perea, Lawrence; Peterson, K.J.; Porter, John L.; Rambo, Patrick K.; Robertson, G.K.; Rochau, G.A.; Schwarz, Jens; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Gary L.; Smith, Ian C.; Speas, Christopher S.; Whittemore, Kelly A.; Woodbury, D.

A multi-frame shadowgraphy diagnostic has been developed and applied to laser preheat experiments relevant to the Magnetized Liner Inertial Fusion (MagLIF) concept. The diagnostic views the plasma created by laser preheat in MagLIF-relevant gas cells immediately after the laser deposits energy as well as the resulting blast wave evolution later in time. The expansion of the blast wave is modeled with 1D radiation-hydrodynamic simulations that relate the boundary of the blast wave at a given time to the energy deposited into the fuel. This technique is applied to four different preheat protocols that have been used in integrated MagLIF experiments to infer the amount of energy deposited by the laser into the fuel. The results of the integrated MagLIF experiments are compared with those of two-dimensional LASNEX simulations. The best performing shots returned neutron yields ∼40-55% of the simulated predictions for three different preheat protocols.

More Details

Stagnation Performance Scaling of Magnetized Liner Inertial Fusion

Gomez, Matthew R.; Yager-Elorriaga, David A.; Myers, Clayton; Slutz, Stephen A.; Weis, Matthew R.; Jennings, Christopher A.; Lamppa, Derek C.; Harvey-Thompson, Adam J.; Geissel, Matthias; Knapp, P.F.; Harding, Eric H.; Hansen, Stephanie B.; Mangan, Michael A.; Ruiz, Carlos L.; Chandler, Gordon A.; Hahn, Kelly D.; Webb, Timothy J.; Moore, Thomas; Laity, George R.; Ampleford, David J.; Peterson, K.J.; Rochau, G.A.; Sinars, Daniel

Abstract not provided.

Designing And Testing New MagLIF Preheat Protocols

Harvey-Thompson, Adam J.; Geissel, Matthias; Weis, Matthew R.; Jennings, Christopher A.; Glinsky, Michael E.; Peterson, K.J.; Awe, Thomas J.; Bliss, David E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Kimmel, Mark; Knapp, P.F.; Lewis, Sean M.; Porter, John L.; Rambo, Patrick K.; Rochau, G.A.; Schollmeier, Marius; Schwarz, Jens; Shores, Jonathon; Slutz, Stephen A.; Sinars, Daniel; Smith, Ian C.; Speas, Christopher S.

Abstract not provided.

MagLIF laser preheat update

Harvey-Thompson, Adam J.; Geissel, Matthias; Weis, Matthew R.; Jennings, Christopher A.; Glinsky, Michael E.; Peterson, K.J.; Awe, Thomas J.; Bliss, David E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Kimmel, Mark; Knapp, P.F.; Lewis, Sean M.; Schollmeier, Marius; Schwarz, Jens; Sefkow, Adam B.; Shores, Jonathon; Slutz, Stephen A.; Sinars, Daniel; Smith, Ian C.; Speas, Christopher S.; Wei, M.S.; Vesey, Roger A.; Porter, John L.

Abstract not provided.

Designing and testing new preheat protocols for MagLIF

Harvey-Thompson, Adam J.; Geissel, Matthias; Weis, Matthew R.; Peterson, K.J.; Glinsky, Michael E.; Awe, Thomas J.; Bliss, David E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Kimmel, Mark; Knapp, P.F.; Lewis, Sean M.; Porter, John L.; Rochau, G.A.; Schollmeier, Marius; Schwarz, Jens; Shores, Jonathon; Slutz, Stephen A.; Sinars, Daniel; Smith, Ian C.; Speas, Christopher S.

Abstract not provided.

Uncovering signatures of preheat performance in MagLIF experiments using stimulated Raman and Brillouin backscatter spectra

Fein, Jeffrey R.; Bliss, David E.; Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Ampleford, David J.; Glinsky, Michael E.; Foulk, James W.; Harding, Eric H.; Macrunnels, Keven A.; Patel, Sonal G.; Ruiz, Daniel E.; Scoglietti, Daniel J.; Smith, Ian C.; Weis, Matthew R.; Peterson, Kara J.

Abstract not provided.

Diagnosing and mitigating laser preheat induced mix in MagLIF

Physics of Plasmas

Harvey-Thompson, Adam J.; Weis, Matthew R.; Harding, Eric H.; Geissel, Matthias; Ampleford, David J.; Chandler, Gordon A.; Fein, Jeffrey R.; Glinsky, Michael E.; Gomez, Matthew R.; Hahn, K.D.; Hansen, Stephanie B.; Jennings, Christopher A.; Knapp, P.F.; Paguio, R.R.; Perea, Lawrence; Peterson, K.J.; Porter, John L.; Rambo, Patrick K.; Robertson, G.K.; Rochau, G.A.; Ruiz, Daniel E.; Schwarz, Jens; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, G.E.; Smith, Ian C.; Speas, Christopher S.; Whittemore, Kelly A.

A series of Magnetized Liner Inertial Fusion (MagLIF) experiments have been conducted in order to investigate the mix introduced from various target surfaces during the laser preheat stage. The material mixing was measured spectroscopically for a variety of preheat protocols by employing mid-atomic number surface coatings applied to different regions of the MagLIF target. The data show that the material from the top cushion region of the target can be mixed into the fuel during preheat. For some preheat protocols, our experiments show that the laser-entrance-hole (LEH) foil used to contain the fuel can be transported into the fuel a significant fraction of the stagnation length and degrade the target performance. Preheat protocols using pulse shapes of a few-ns duration result in the observable LEH foil mix both with and without phase-plate beam smoothing. In order to reduce this material mixing, a new capability was developed to allow for a low energy (∼20 J) laser pre-pulse to be delivered early in time (-20 ns) before the main laser pulse (∼1.5 kJ). In experiments, this preheat protocol showed no indications of the LEH foil mix. The experimental results are broadly in agreement with pre-shot two-dimensional HYDRA simulations that helped motivate the development of the early pre-pulse capability.

More Details

Enhancing performance of magnetized liner inertial fusion at the Z facility

Physics of Plasmas

Slutz, Stephen A.; Gomez, Matthew R.; Hansen, Stephanie B.; Harding, Eric H.; Hutsel, Brian T.; Knapp, P.F.; Lamppa, Derek C.; Awe, Thomas J.; Ampleford, David J.; Bliss, David E.; Chandler, Gordon A.; Cuneo, Michael E.; Geissel, Matthias; Glinsky, Michael E.; Hahn, Kelly D.; Harvey-Thompson, Adam J.; Hess, Mark H.; Jennings, Christopher A.; Jones, Brent M.; Laity, George R.; Martin, Matthew R.; Peterson, K.J.; Porter, John L.; Rambo, Patrick K.; Rochau, G.A.; Rovang, Dean C.; Ruiz, Carlos L.; Savage, Mark E.; Schwarz, Jens; Schmit, Paul; Shipley, Gabriel A.; Sinars, Daniel; Smith, Ian C.; Stygar, William; Vesey, Roger A.; Weis, Matthew R.

The Magnetized Liner Inertial Fusion concept (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is being studied on the Z facility at Sandia National Laboratories. Neutron yields greater than 1012 have been achieved with a drive current in the range of 17-18 MA and pure deuterium fuel [Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]. We show that 2D simulated yields are about twice the best yields obtained on Z and that a likely cause of this difference is the mix of material into the fuel. Mitigation strategies are presented. Previous numerical studies indicate that much larger yields (10-1000 MJ) should be possible with pulsed power machines producing larger drive currents (45-60 MA) than can be produced by the Z machine [Slutz et al., Phys. Plasmas 23, 022702 (2016)]. To test the accuracy of these 2D simulations, we present modifications to MagLIF experiments using the existing Z facility, for which 2D simulations predict a 100-fold enhancement of MagLIF fusion yields and considerable increases in burn temperatures. Experimental verification of these predictions would increase the credibility of predictions at higher drive currents.

More Details

The staged z-pinch as a potential high gain fusion energy source: An independent review, a negative conclusion

Physics of Plasmas

Lindemuth, Irvin R.; Weis, Matthew R.; Atchison, Walter L.

Previously published calculations predict that the "staged z-pinch" (SZP) can achieve 400 MJ of fusion yield on a Z-class machine. The SZP is touted to need no external preheat mechanism and no external pre-magnetization method. Instead, it is claimed that the imploding liner can adequately "shock preheat" the fuel and magnetic field diffusion through the liner can adequately magnetize the fuel. In this paper, we analyze a number of published SZP calculations and demonstrate that the calculations have major errors - the computer code used to do the calculations does not appear to be accurately solving the physical model it is intended to solve. A variety of independent analyses lead to this conclusion. This conclusion is confirmed by detailed one-dimensional magnetohydrodynamic (MHD) calculations conducted on different computer codes using a variety of proposed SZP operating parameters. Although using parameters similar or identical to the published calculations, our MHD calculations do not reach fusion conditions; there is no conceivable modification of the parameters that would lead to high-gain fusion conditions using these other codes. Our analyses and a review of the magnetized target parameter space leads to further conclusion that the SZP should not be considered to be a potential high-gain fusion source.

More Details

Pushing Laser Pre-Heat in MagLIF

Geissel, Matthias; Harvey-Thompson, Adam J.; Fein, Jeffrey R.; Woodbury, Daniel; Davis, Daniel R.; Bliss, David E.; Scoglietti, Daniel J.; Gomez, Matthew R.; Ampleford, David J.; Awe, Thomas J.; Colombo, Anthony; Weis, Matthew R.; Jennings, Christopher A.; Glinsky, Michael E.; Slutz, Stephen A.; Ruiz, Daniel E.; Peterson, K.J.; Smith, Ian C.; Shores, Jonathon; Kimmel, Mark; Rambo, Patrick K.; Schwarz, Jens; Galloway, Benjamin R.; Speas, Christopher S.; Porter, John L.

Abstract not provided.

A Window-less Target for Magnetized Liner Inertial Fusion Characterized using High-Speed Solid-State Framing Cameras

Colombo, Anthony; Schwarz, Jens; Rambo, Patrick K.; Galloway, Benjamin R.; Kimmel, Mark; Slutz, Stephen A.; Weis, Matthew R.; Claus, Liam; England, Troy D.; Fang, Lu; Looker, Quinn M.; Mitchell, Brandon; Montoya, Andrew; Robertson, Gideon; Rochau, G.A.; Sanchez, Marcos O.; Stahoviak, John W.; Hund, Jared; Sin, Justin; Porter, John L.

Abstract not provided.

MagLIFEP and MagLIFSNL

Harvey-Thompson, Adam J.; Wei, Mingsheng; Glinsky, Michael E.; Weis, Matthew R.; Nagayama, Taisuke; Peterson, K.J.; Fooks, J.; Giraldez, E.; Krauland, C.; Campbell, M.; Davies, J.; Peebles, J.; Bahr, R.; Edgell, D.; Stoeckl, C.; Turnbull, D.; Glebov, V.; Emig, J.; Heeter, R.; Strozzi, D.

The MagLIF campaign operated by Sandia conducted a total of four shot days in FY17 (one on OMEGA and three on OMEGA-EP) aimed at characterizing the laser heating of underdense plasmas (D2, Ar) at parameters that are relevant to the Magnetized Liner Inertial Fusion (MagLIF) ICF scheme being pursued at Sandia National Laboratories [1] [2]. MagLIF combines fuel preheat, magnetization and pulsed power implosion to significantly relax the implosion velocity and pR required for self-heating. Effective fuel preheat requires coupling several kJ of laser energy into the 10 mm long, underdense (typically ne/nc<0.1) fusion fuel without introducing significant mix. Barriers to achieving this include the presence laser plasma instabilities (LPI) as laser energy is coupled to the initially cold fuel, and the presence of a thin, polyimide laser entrance hole (LEH) foil that the laser must pass through and that can be a significant perturbation.

More Details

Minimizing scatter-losses during pre-heat for magneto-inertial fusion targets

Physics of Plasmas

Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Harding, Eric H.; Hansen, Stephanie B.; Speas, Christopher S.; Kimmel, Mark; Knapp, P.F.; Lewis, Sean M.; Peterson, K.J.; Schollmeier, Marius; Schwarz, Jens; Shores, Jonathon; Slutz, Stephen A.; Sinars, Daniel; Smith, Ian C.; Vesey, Roger A.; Weis, Matthew R.; Porter, John L.

The size, temporal and spatial shape, and energy content of a laser pulse for the pre-heat phase of magneto-inertial fusion affect the ability to penetrate the window of the laser-entrance-hole and to heat the fuel behind it. High laser intensities and dense targets are subject to laser-plasma-instabilities (LPI), which can lead to an effective loss of pre-heat energy or to pronounced heating of areas that should stay unexposed. While this problem has been the subject of many studies over the last decades, the investigated parameters were typically geared towards traditional laser driven Inertial Confinement Fusion (ICF) with densities either at 10% and above or at 1% and below the laser's critical density, electron temperatures of 3-5 keV, and laser powers near (or in excess of) 1 × 1015 W/cm2. In contrast, Magnetized Liner Inertial Fusion (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010) and Slutz and Vesey, Phys. Rev. Lett. 108, 025003 (2012)] currently operates at 5% of the laser's critical density using much thicker windows (1.5-3.5 μm) than the sub-micron thick windows of traditional ICF hohlraum targets. This article describes the Pecos target area at Sandia National Laboratories using the Z-Beamlet Laser Facility [Rambo et al., Appl. Opt. 44(12), 2421 (2005)] as a platform to study laser induced pre-heat for magneto-inertial fusion targets, and the related progress for Sandia's MagLIF program. Forward and backward scattered light were measured and minimized at larger spatial scales with lower densities, temperatures, and powers compared to LPI studies available in literature.

More Details
Results 51–100 of 123
Results 51–100 of 123