Publications

Results 201–225 of 376

Search results

Jump to search filters

Three-dimensional fully-coupled electrical and thermal transport model of dynamic switching in oxide memristors

ECS Transactions (Online)

Gao, Xujiao; Mamaluy, Denis; Mickel, Patrick R.; Marinella, Matthew

In this paper, we present a fully-coupled electrical and thermal transport model for oxide memristors that solves simultaneously the time-dependent continuity equations for all relevant carriers, together with the time-dependent heat equation including Joule heating sources. The model captures all the important processes that drive memristive switching and is applicable to simulate switching behavior in a wide range of oxide memristors. The model is applied to simulate the ON switching in a 3D filamentary TaOx memristor. Simulation results show that, for uniform vacancy density in the OFF state, vacancies fill in the conduction filament till saturation, and then fill out a gap formed in the Ta electrode during ON switching; furthermore, ON-switching time strongly depends on applied voltage and the ON-to-OFF current ratio is sensitive to the filament vacancy density in the OFF state.

More Details

Thermal transport in tantalum oxide films for memristive applications

Applied Physics Letters

Landon, Colin D.; Ihlefeld, Jon F.; Brumbach, Michael T.; Marinella, Matthew; Foulk, James W.; Foulk, James W.; Brennecka, Geoff

The thermal conductivity of amorphous TaOx memristive films having variable oxygen content is measured using time domain thermoreflectance. Thermal transport is described by a two-part model where the electrical contribution is quantified via the Wiedemann-Franz relation and the vibrational contribution by the minimum thermal conductivity limit for amorphous solids. The vibrational contribution remains constant near 0.9 W/mK regardless of oxygen concentration, while the electrical contribution varies from 0 to 3.3 W/mK. Thus, the dominant thermal carrier in TaOx switches between vibrations and charge carriers and is controllable either by oxygen content during deposition, or dynamically by field-induced charge state migration.

More Details

Overview of the radiation response of anion-based memristive devices

IEEE Aerospace Conference Proceedings

Mclain, Michael; Marinella, Matthew

In this paper, we provide an overview of the current knowledge of radiation effects in anion-based memristive devices. We will specifically look at the impact of high dose rate ionizing radiation, total ionizing dose (TID), and heavy ions on the electrical characteristics of tantalum oxide (TaOx), titanium dioxide (TiO2), and hafnium oxide (HfOx) memristors. The primary emphasis, however, will be placed on TaOx memristors. While there are several other anion-based memristive devices being fabricated by the semiconductor community for possible use in valence change memories, most of the present radiation work has focused on one of these types of devices. There have also been numerous studies on radiation effects in cation-based chalcogenides such as germanium sulfides and selenides. However, that will not be discussed in this paper.

More Details

Trapping characteristics and parametric shifts in lateral GaN HEMTs with SiO2/AlGaN gate stacks

IEEE International Reliability Physics Symposium Proceedings

King, Michael P.; Dickerson, Jeramy; Dasgupta, S.; Marinella, Matthew; Kaplar, Robert; Piedra, D.; Sun, M.; Palacios, T.

Recovery transients following blocking-state voltage stress are analyzed for two types of AlGaN/GaN HEMTs, one set of devices with thick AlGaN barrier layers and another with recessed-gate geometry and ALD SiO2 gate dielectric. Results show temperature-invariant emission processes are present in both devices. Recessed-gate devices with SiO2 dielectrics are observed to exhibit simultaneous trapping and emission processes during post-stress recovery.

More Details

Oxidation state and interfacial effects on oxygen vacancies in tantalum pentoxide

Journal of Applied Physics

Bondi, Robert J.; Marinella, Matthew

First-principles density-functional theory calculations are used to study the atomistic structure, structural energetics, and electron density near the O monovacancy (VOn; n = 0,1+,2+) in both bulk, amorphous tantalum pentoxide (a-Ta2O5), and also at vacuum and metallic Ta interfaces. We calculate multivariate vacancy formation energies to evaluate stability as a function of oxidation state, distance from interface plane, and Fermi energy. VOn of all oxidation states preferentially segregates at both Ta and vacuum interfaces, where the metallic interface exhibits global formation energy minima. In a-Ta2O5, VO0 is characterized by structural contraction and electron density localization, while VO2+ promotes structural expansion and is depleted of electron density. In contrast, interfacial VO0 and VO2+ show nearly indistinguishable ionic and electronic signatures indicative of a reduced VO center. Interfacial VO2+ extracts electron density from metallic Ta, indicating that VO2+ is spontaneously reduced at the expense of the metal. This oxidation/reduction behavior suggests careful selection and processing of both oxide layer and metal electrodes for engineering memristor device operation.

More Details
Results 201–225 of 376
Results 201–225 of 376