Overview of the Radiation Response of Anion-Based Memristive Devices
Abstract not provided.
Abstract not provided.
IEEE Transactions on Nuclear Science
The locations of conductive regions in TaOx memristors are spatially mapped using a microbeam and Nanoimplanter by rastering an ion beam across each device while monitoring its resistance. Microbeam irradiation with 800 keV Si ions revealed multiple sensitive regions along the edges of the bottom electrode. The rest of the active device area was found to be insensitive to the ion beam. Nanoimplanter irradiation with 200 keV Si ions demonstrated the ability to more accurately map the size of a sensitive area with a beam spot size of 40 nm by 40 nm. Isolated single spot sensitive regions and a larger sensitive region that extends approximately 300 nm were observed.
IEEE Transactions on Nuclear Science
The locations of conductive regions in TaOx memristors are spatially mapped using a microbeam and Nanoimplanter by rastering an ion beam across each device while monitoring its resistance. Microbeam irradiation with 800 keV Si ions revealed multiple sensitive regions along the edges of the bottom electrode. The rest of the active device area was found to be insensitive to the ion beam. Nanoimplanter irradiation with 200 keV Si ions demonstrated the ability to more accurately map the size of a sensitive area with a beam spot size of 40 nm by 40 nm. Isolated single spot sensitive regions and a larger sensitive region that extends approximately 300 nm were observed.
IEEE Transactions on Nuclear Science
This paper investigates the effects of high dose rate ionizing radiation and total ionizing dose (TID) on tantalum oxide (TaOx) memristors. Transient data were obtained during the pulsed exposures for dose rates ranging from approximately 5.0 ×107 rad(Si)/s to 4.7 ×108 rad(Si)/s and for pulse widths ranging from 50 ns to 50 μs. The cumulative dose in these tests did not appear to impact the observed dose rate response. Static dose rate upset tests were also performed at a dose rate of ~3.0 ×108 rad(Si)/s. This is the first dose rate study on any type of memristive memory technology. In addition to assessing the tolerance of TaOx memristors to high dose rate ionizing radiation, we also evaluated their susceptibility to TID. The data indicate that it is possible for the devices to switch from a high resistance off-state to a low resistance on-state in both dose rate and TID environments. The observed radiation-induced switching is dependent on the irradiation conditions and bias configuration. Furthermore, the dose rate or ionizing dose level at which a device switches resistance states varies from device to device; the enhanced susceptibility observed in some devices is still under investigation. As a result, numerical simulations are used to qualitatively capture the observed transient radiation response and provide insight into the physics of the induced current/voltages.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report discusses aspects of neuromorphic computing and how it is used to model microsystems.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Applied Physics Letters
We report resistive switching data in TaOx memristors displaying signatures of multi-filament switching modes and present a technique which enables the characterization of the evolution of multiple filaments within a single device during switching, including their temperature, heat flow, conductivity, and time evolving areas. Using a geometrically defined equivalent circuit, we resolve the individual current/voltage values of each filament and demonstrate that the switching curves of each filament collapse onto a common curve determined by the analytical steady-state resistive switching solution for filamentary switching. Finally, we discuss operational modes which may limit the formation of additional conducting filaments, potentially leading to increased device endurance. © 2014 AIP Publishing LLC.
Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms
We present a novel ion beam analysis technique combining Rutherford forward scattering and elastic recoil detection (RFSERD) and demonstrate its ability to increase efficiency in determining stoichiometry in ultrathin (5-50 nm) films as compared to Rutherford backscattering. In the conventional forward geometries, scattering from the substrate overwhelms the signal from light atoms but in RFSERD, scattered ions from the substrate are ranged out while forward scattered ions and recoiled atoms from the thin film are simultaneously detected in a single detector. The technique is applied to tantalum oxide memristors but can be extended to a wide range of materials systems. © 2014 Published by Elsevier B.V.
Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms
We present a novel ion beam analysis technique combining Rutherford forward scattering and elastic recoil detection (RFSERD) and demonstrate its ability to increase efficiency in determining stoichiometry in ultrathin (5-50 nm) films as compared to Rutherford backscattering. In the conventional forward geometries, scattering from the substrate overwhelms the signal from light atoms but in RFSERD, scattered ions from the substrate are ranged out while forward scattered ions and recoiled atoms from the thin film are simultaneously detected in a single detector. The technique is applied to tantalum oxide memristors but can be extended to a wide range of materials systems. © 2014 Published by Elsevier B.V.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Applied Physics
We discuss the thermal effects on scaling, retention, and error rate in filamentary resistive memories from a theoretical perspective using an analytical approach. Starting from the heat equation, we derive the temperature profile surrounding a resistive memory device and calculate its effect on neighboring devices. We outline the engineering tradeoffs that are expected with continued scaling, such as retention and power use per device. Based on our calculations, we expect scaling to continue well below 10 nm, but that the effect of heating from neighboring devices needs to be considered for some applications even at current manufacturing capabilities. We discuss possible designs to alleviate some of these effects while further increasing device density. © 2014 AIP Publishing LLC.
Nanotechnology
Abstract not provided.
Abstract not provided.