Publications

88 Results

Search results

Jump to search filters

Design of a 1 MWth Supercritical Carbon Dioxide Primary Heat Exchanger Test System

Journal of Energy Resources Technology, Transactions of the ASME

Carlson, Matthew D.; Alvarez, Francisco

A new generation of concentrating solar power (CSP) technologies is under development to provide dispatchable renewable power generation and reduce the levelized cost of electricity (LCOE) to 6 cents/kWh by leveraging heat transfer fluids (HTFs) capable of operation at higher temperatures and coupling with higher efficiency power conversion cycles. The U.S. Department of Energy (DOE) has funded three pathways for Generation 3 CSP (Gen3CSP) technology development to leverage solid, liquid, and gaseous HTFs to transfer heat to a supercritical carbon dioxide (sCO2) Brayton cycle. This paper presents the design and off-design capabilities of a 1 MWth sCO2 test system that can provide sCO2 coolant to the primary heat exchangers (PHX) coupling the high-Temperature HTFs to the sCO2 working fluid of the power cycle. This system will demonstrate design, performance, lifetime, and operability at a scale relevant to commercial CSP. A dense-phase high-pressure canned motor pump is used to supply up to 5.3 kg/s of sCO2 flow to the primary heat exchanger at pressures up to 250 bar and temperatures up to 715 °C with ambient air as the ultimate heat sink. Key component requirements for this system are presented in this paper.

More Details

Development and testing of a 20 KW moving packed-bed particle-to-SCO2 heat exchanger and test facility

Proceedings of the ASME 2021 15th International Conference on Energy Sustainability, ES 2021

Albrecht, Kevin J.; Laubscher, Hendrik F.; Carlson, Matthew D.; Ho, Clifford K.

This paper describes the development of a facility for evaluating the performance of small-scale particle-to-sCO2 heat exchangers, which includes an isobaric sCO2 flow loop and an electrically heated particle flow loop. The particle flow loop is capable of delivering up to 60 kW of heat at a temperature of 600°C and flow rate of 0.4 kg/s. The loop was developed to facilitate long duration off-sun testing of small prototype heat exchangers to produce model validation data at steady-state operating conditions. Lessons learned on instrumentation, control, and system integration from prior testing of larger heat exchangers with solar thermal input were used to guide the design of the test facility. In addition, the development and testing of a novel 20-kWt moving packed-bed particle-to-sCO2 heat exchanger using the integrated flow loops is reported. The prototype heat exchanger implements many novel features for increasing thermal performance and reducing pressure drop which include integral porting of the sCO2 flow, unique bond/braze manufacturing, narrow plate spacing, and pure counter-flow arrangement. The experimental data collected for the prototype heat exchanger was compared to model predictions to verify the sizing, thermal performance, and pressure drop which will be extended to multi-megawatt heat exchanger designs in the future.

More Details

Guidelines for the design and operation of supercritical carbon dioxide R&D systems

AIP Conference Proceedings

Carlson, Matthew D.

This paper captures guidelines for the design and operation of sCO2 systems for research and development applications with specific emphasis on single-pressure pumped loops for thermal-hydraulic experiments and implications toward larger sCO2 Brayton power cycles. Direct experience with R&D systems at the kilowatt (kW), 50 kW, 200 kW, and 1 megawatt thermal scale has resulted in a recommended work flow to move a design from a thermodynamic flowsheet to a set of detailed build plans that account for industrial standards, engineering analysis, and operating experience. Analyses of operational considerations including CO2 storage, filling, pressurization, inventory management, and sensitivity to pump inlet conditions were conducted and validated during shakedown and operation of a 200 kilowatt-scale sCO2 system.

More Details

High-Temperature Particle Heat Exchanger for sCO2 Power Cycles [Award 30342]

Carlson, Matthew D.; Albrecht, Kevin J.; Ho, Clifford K.; Laubscher, Hendrik F.; Alvarez, Francisco

This report describes the design, development, and testing of a prototype 100 kWt particle-to-supercritical CO2 (sCO2) heat exchanger. An analytic hierarchy process was implemented to compare and evaluate alternative heat-exchanger designs (fluidized bed, shell-and-plate moving packed bed, and shell-and-tube moving packed bed) that could meet the high pressure (≥ 20 MPa) and high temperature (≥ 700 °C) operational requirements associated with sCO2 power cycles. Cost, heat-transfer coefficient, structural reliability, manufacturability, parasitics and heat losses, scalability, compatibility, erosion and corrosion, transient operation, and inspection ease were considered in the evaluation. A 100 kWt shell-and-plate design was selected for construction and integration with Sandia’s falling particle receiver system that heats the particles using concentrated sunlight. Sandia worked with industry to design and construct the moving packed-bed shell-and-plate heat exchanger. Tests were performed to evaluate its performance using both electrical heating and concentrated sunlight to heat the particles. Overall heat transfer coefficients at off-design conditions (reduced operating temperatures and only three stainless steel banks in the counter-crossflow heat exchanger) were measured to be approximately ~25 - 70 W/m2-K, significantly lower than simulated values of >100 W/m2-K. Tests using the falling particle receiver to heat the particles with concentrated sunlight yielded overall heat transfer coefficients of ~35 – 80 W/m2-K with four banks (including a nickel-alloy bank above the three stainless steel banks). The overall heat transfer coefficient was observed to decrease with increasing particle inlet temperatures, which contrasted the results of simulations that showed an increase in heat transfer coefficient with temperature due to increased effective particle-bed thermal conductivity from radiation. The likely cause of the discrepancy was particle-flow maldistributions and funnel flow within the heat exchanger caused by internal ledges and cross-bracing, which could have been exacerbated by increased particle-wall friction at higher temperatures. Additional heat loss at higher temperatures may also contribute to a lower overall heat-transfer coefficient. Design challenges including pressure drop, particle and sCO2 flow maldistribution, and reduced heat transfer coefficient are discussed with approaches for mitigation in future designs. Lessons learned regarding instrumentation, performance characterization, and operation of particle components and sCO2 flow loops are also discussed. Finally, a 200 MWt commercial-scale shell-and-plate heat-exchanger design based on the concepts investigated in this report is proposed.

More Details

Gen3CSP sCO2 Loop Scope of Supply (V0.0.3)

Alvarez, Francisco; Carlson, Matthew D.

The Generation 3 Concentrating Solar Power (Gen3CSP) supercritical carbon dioxide (sCO2) coolant loop, typically referred to here as the `sCO2loop,' is designed to continuously remove heat from a primary heat exchanger (PHX) subsystem through a flow of sCO2 as a substitute for a sCO2 Brayton power cycle as shown in Figure 1-1. This system is designed to function as a pumped coolant loop operating at a high baseline pressure with a high degree of flexibility, stability, and autonomy to simplify operation of a Gen3CSP Topic 1 team Phase 3 pilot plant. The complete system includes a dedicated inventory management module to fill the main flow loop with CO2 and recovery CO2 during heating and venting operations to minimize the delivery of CO2 to the site.

More Details

Design and Implementation of a 1-3 MWth sCO2 Support Loop for Gen3 CSP Primary Heat Exchangers

Carlson, Matthew D.; Alvarez, Francisco

The generation 3 concentrating solar power, or Gen3CSP, campaign seeks to de-risk and deploy a CSP pilot plant through three parallel project tracks focused on solid, liquid, and gas-phase primary heat transfer fluids. Although the components between the sun and the primary heat exchanger from the thermal storage system differ with each track, the supercritical carbon dioxide (sCO2) coolant system required to cool the primary heat exchanger in place of a complete power conversion system has very similar requirements regardless of the primary heat transfer fluid. In order to avoid duplicative efforts, this project will design, assemble, perform acceptance testing, and deploy a single sCO2 coolant system design meeting the needs of any Gen3CSP topic 1 pathway pilot plant design.

More Details

Compact heat exchanger semi-circular header burst pressure and strain validation

Proceedings of the ASME Turbo Expo

Lance, Blake W.; Carlson, Matthew D.

Compact heat exchangers for supercritical CO2 (sCO2) service are often designed with external, semi-circular headers. Their design is governed by the ASME Boiler & Pressure Vessel Code (BPVC) whose equations were typically derived by following Castigliano’s Theorems. However, there are no known validation experiments to support their claims of pressure rating or burst pressure predictions nor is there much information about how and where failures occur. This work includes high pressure bursting of three semicircular header prototypes for the validation of three aspects: (1) burst pressure predictions from the BPVC, (2) strain predictions from Finite Element Analysis (FEA), and (3) deformation from FEA. The header prototypes were designed with geometry and weld specifications from the BPVC Section VIII Division 1, a design pressure typical of sCO2 service of 3,900 psi (26.9 MPa), and were built with 316 SS. Repeating the test in triplicate allows for greater confidence in the experimental results and enables data averaging. Burst pressure predictions are compared with experimental results for accuracy assessment. The prototypes are analyzed to understand their failure mechanism and locations. Experimental strain and deformation measurements were obtained optically with Digital Image Correlation (DIC). This technique allows strain to be measured in two dimensions and even allows for deformation measurements, all without contacting the prototype. Eight cameras are used for full coverage of both headers on the prototypes. The rich data from this technique are an excellent validation source for FEA strain and deformation predictions. Experimental data and simulation predictions are compared to assess simulation accuracy.

More Details

Microchannel heat exchanger flow validation study

Proceedings of the ASME Turbo Expo

Lance, Blake L.; Carlson, Matthew D.

Flow maldistribution in microchannel heat exchanger(MCHEs) can negatively impact heat exchanger effectiveness.Several rules of thumb exist about designing for uniform flow,but very little data are published to support these claims. In thiswork, complementary experiments and computational fluiddynamics (CFD) simulations of MCHEs enable a solidunderstanding of flow uniformity to a higher level of detail thanpreviously seen. Experiments provide a validation data source toassess CFD predictive capability. The traditional semi-circularheader geometry is tested. Experiments are carried out in a clearacrylic MCHE and water flow is measured optically with particleimage velocimetry. CFD boundary conditions are matched tothose in the experiment and the outputs, specifically velocity andturbulent kinetic energy profiles, are compared.

More Details

Evaluation of alternative designs for a high temperature particle-to-SCO2 heat exchanger

ASME 2018 12th International Conference on Energy Sustainability, ES 2018, collocated with the ASME 2018 Power Conference and the ASME 2018 Nuclear Forum

Ho, Clifford K.; Carlson, Matthew D.; Albrecht, Kevin J.; Ma, Zhiwen; Jeter, Sheldon; Nguyen, Clayton M.

This paper presents an evaluation of alternative particle heat-exchanger designs, including moving packed-bed and fluidized-bed designs, for high-temperature heating of a solardriven supercritical CO2 (sCO2) Brayton power cycle. The design requirements for high pressure (> 20 MPa) and high temperature (> 700 °C) operation associated with sCO2 posed several challenges requiring high-strength materials for piping and/or diffusion bonding for plates. Designs from several vendors for a 100 kW-thermal particle-to-sCO2 heat exchanger were evaluated as part of this project. Cost, heat-transfer coefficient, structural reliability, manufacturability, parasitics and heat losses, scalability, compatibility, erosion and corrosion, transient operation, and inspection ease were considered in the evaluation. An analytical hierarchy process was used to weight and compare the criteria for the different design options. The fluidized-bed design fared the best on heat transfer coefficient, structural reliability, scalability and inspection ease, while the moving packed-bed designs fared the best on cost, parasitics and heat losses, manufacturability, compatibility, erosion and corrosion, and transient operation. A 100 kWt shell-and-plate design was ultimately selected for construction and integration with Sandia's falling particle receiver system.

More Details

Microchannel heat exchanger flow validation study

Proceedings of the ASME Turbo Expo

Lance, Blake L.; Carlson, Matthew D.

Flow maldistribution in microchannel heat exchanger(MCHEs) can negatively impact heat exchanger effectiveness.Several rules of thumb exist about designing for uniform flow,but very little data are published to support these claims. In thiswork, complementary experiments and computational fluiddynamics (CFD) simulations of MCHEs enable a solidunderstanding of flow uniformity to a higher level of detail thanpreviously seen. Experiments provide a validation data source toassess CFD predictive capability. The traditional semi-circularheader geometry is tested. Experiments are carried out in a clearacrylic MCHE and water flow is measured optically with particleimage velocimetry. CFD boundary conditions are matched tothose in the experiment and the outputs, specifically velocity andturbulent kinetic energy profiles, are compared.

More Details

Techno-economic comparison of solar-driven SCO2 brayton cycles using component cost models baselined with vendor data and estimates

ASME 2017 11th International Conference on Energy Sustainability, ES 2017, collocated with the ASME 2017 Power Conference Joint with ICOPE 2017, the ASME 2017 15th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2017 Nuclear Forum

Carlson, Matthew D.; Middleton, Bobby M.; Ho, Clifford K.

Supercritical carbon dioxide (sCO2) Brayton power cycles have the potential to significantly improve the economic viability of concentrating solar power (CSP) plants by increasing the thermal to electric conversion efficiency from around 35% using high-temperature steam Rankine systems to above 45% depending on the cycle configuration. These systems are the most likely path toward achieving the Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy (EERE) SunShot targets for CSP tower thermal to electric conversion efficiency above 50% with dry cooling to air at 40 °C and a power block cost of less than 900 $/kWe. Many studies have been conducted to optimize the performance of various sCO2 Brayton cycle configurations in order to achieve high efficiency, and a few have accounted for drivers of cost such as equipment size in the optimization, but complete techno-economic optimization has not been feasible because there are no validated models relating component performance and cost. Reasonably accurate component cost models exist from several sources for conventional equipment including turbines, compressors, and heat exchangers for use in rough order of magnitude cost estimates when assembling a system of conventional equipment. However, cost data from fabricated equipment relevant to sCO2 Brayton cycles is very limited in terms of both supplier variety and performance level with most existing data in the range of 1 MWe power cycles or smaller systems, a single completed system around 7 MWe by Echogen Power Systems, and numerous ROM estimates based on preliminary designs of equipment for 10 MWe systems. This data is highly proprietary as the publication of individual data by any single supplier would damage their market position by potentially allowing other vendors to undercut their stated price rather than competing on reduced manufacturing costs. This paper describes one approach to develop component cost models in order to enable the techno-economic optimization activities needed to guide further research and development while protecting commercially proprietary information from individual vendors. Existing cost models were taken from literature for each major component used in different sCO2 Brayton cycle configurations and adjusted for their magnitude to fit the limited vendor cost data and estimates available. A mean fit curve was developed for each component and used to calculate updated cost comparisons between previously-reviewed sCO2 Brayton cycle configurations for CSP applications including simple recuperated, recompression, cascaded, and mixed-gas combined bifurcation with intercooling cycles. These fitting curves represent an average of the assembled vendor data without revealing any individual vendor cost, and maintain the scaling behavior with performance expected from similar equipment found in literature.

More Details

Printed circuit heat exchanger flow distribution measurements

Proceedings of the ASME Turbo Expo

Lance, Blake L.; Carlson, Matthew D.

Printed circuit heat exchangers (PCHEs) have an important role in supercritical CO2 (sCO2) Brayton cycles because of their small footprint and the high level of recuperation required for this power cycle. Compact heat exchangers like PCHEs are a rapidly evolving technology, with many companies developing various designs. One technical unknown that is common to all compact heat exchangers is the flow distribution inside the headers that affects channel flow uniformity. For compact heat exchangers, the core frontal area is often large compared with the inlet pipe area, increasing the possibility of flow maldistribution. With the large area difference, there is potential for higher flow near the center and lower flow around the edges of the core. Flow maldistribution increases pressure drop and decreases effectiveness. In some header geometries, flow separation inside the header adds to the pressure drop without increasing heat transfer. This is the first known experiment to test for flow maldistribution by direct velocity measurements in the headers. A PCHE visualization prototype was constructed out of transparent acrylic for optical flow measurements with Particle Image Velocimetry (PIV). The channels were machined out of sheets to form many semi-circular cross sections typical of chemically-etched plates used in PCHE fabrication. These plates were stacked and bolted together to resemble the core geometry. Two header geometries were tested, round and square, both with a normally-oriented jet. PIV allows for velocities to be measured in an entire plane instantly without disturbing the flow. Small particles of approximately 10 micrometers in diameter were added to unheated water. The particles were illuminated by two laser flashes that were carefully timed, and two images were acquired with a specialized digital camera. The movement of particle groups was detected by a cross-correlation algorithm with a result of about 50k velocity measurements in a plane. The velocity distribution inside the header volume was mapped using this method over many planes by traversing the PCHE relative to the optical equipment. The level of flow maldistribution was measured by the spatially-changing velocity coming out of the channels. This effect was quantified by the coefficient of variation proposed by Baek et al. The relative levels of flow maldistribution in the different header geometries in this study were assessed. With highly-resolved velocity measurements, improvements to header geometry to reduce flow maldistribution can be developed.

More Details

Integrated Cyber/Physical Impact Analysis to secure US Critical Infrastructure

Dawson, Lon A.; Rochau, Gary E.; Mendez Cruz, Carmen M.; Carlson, Matthew D.; Fleming, Darryn F.

In a common electric power plant, heat is used to boil water into steam which drives a turbine. The steam from the turbine outlet is condensed with cooling water. This is the common Rankine cycle and, even after decades of development is relatively inefficient and water intensive. Alternatively, a closed Brayton cycle recirculates the working fluid, and the turbine exhaust is used in a recuperating heat exchanger to heat the turbine feed. A "supercritical cycle' is a closed Brayton cycle in which the working fluid, such as supercritical carbon dioxide (sCO2), is maintained above the critical point during the compression phase of the cycle. The key property of the fluid near its critical point is its higher gas density, closer to that of a liquid than of a gas, allowing for the pumping power in the compressor to be significantly reduced resulting in improved efficiency. Other advantages include smaller component size and the reduced use of water, not only due to the increased efficiency, but also due sensible heat rejection which facilitates dry air cooling compared to air-cooled steam condensers. A Sandia National Laboratories commercialization review concluded that the technology has applicability across various power generation applications including fossil fuels, concentrated solar power and nuclear power. In 2006, Sandia National Laboratories (SNL), recognizing the potential advantages of a higher efficiency power cycle, used internal funds to establish a testing capability and began partnering with the U.S. Department of Energy Office of Nuclear Energy to develop a laboratory-scale test assembly to show the viability of the underlying science and demonstrate system performance. Since that time, SNL has generated power, verified cycle performance, and developed cycle controls and maintenance procedures. The test assembly has successfully operated in different configurations (simple Brayton, waste heat cycle, and recompression) and tested additives to the s-CO2 working fluid. Our current focus is to partner with industry and develop cycle components and control strategies sufficient to support a successful commercial offering. This paper has been developed for the Energy Policy Institute's (EPI's) 6th Annual Energy Policy Research Conference scheduled for 8 & 9 September 2016 in Santa Fe, NM. We describe the cycle in more detail and describe specific benefits and applications. The paper will also include current technology development activities and future plans.

More Details

A particle/sCO2 heat exchanger testbed and reference cycle cost analysis

ASME 2016 10th International Conference on Energy Sustainability, ES 2016, collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology

Carlson, Matthew D.; Ho, Clifford K.

The high-temperature particle - supercritical carbon dioxide (sCO2) Brayton power system is a promising option for concentrating solar power (CSP) plants to achieve SunShot metrics for high-temperature operation, efficiency, and cost. This system includes a falling particle receiver to collect solar thermal radiation, a dry-cooled sCO2 Brayton power block to produce electricity, and a particle to sCO2 heat exchanger to couple the previous two. While both falling particle receivers and sCO2 Brayton cycles have been demonstrated previously, a high temperature, high pressure particle/sCO2 heat exchanger has never before been demonstrated. Industry experience with similar heat exchangers is limited to lower pressures, lower temperatures, or alternative fluids such as steam. Sandia is partnering with three experienced heat exchanger manufacturers to develop and down-select several designs for the unit that achieves both high performance and low specific cost to retire risks associated with a solar thermal particle/sCO2 power system. This paper describes plans for the construction of a particle sCO2 heat exchanger testbed at Sandia operating above 700 °C and 20 MPa, with the ability to couple directly with a previously-developed falling particle receiver for on-sun testing at the National Solar Thermal Test Facility (NSTTF).

More Details

A particle/sCO2 heat exchanger testbed and reference cycle cost analysis

ASME 2016 10th International Conference on Energy Sustainability, ES 2016, collocated with the ASME 2016 Power Conference and the ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology

Carlson, Matthew D.; Ho, Clifford K.

The high-temperature particle - supercritical carbon dioxide (sCO2) Brayton power system is a promising option for concentrating solar power (CSP) plants to achieve SunShot metrics for high-temperature operation, efficiency, and cost. This system includes a falling particle receiver to collect solar thermal radiation, a dry-cooled sCO2 Brayton power block to produce electricity, and a particle to sCO2 heat exchanger to couple the previous two. While both falling particle receivers and sCO2 Brayton cycles have been demonstrated previously, a high temperature, high pressure particle/sCO2 heat exchanger has never before been demonstrated. Industry experience with similar heat exchangers is limited to lower pressures, lower temperatures, or alternative fluids such as steam. Sandia is partnering with three experienced heat exchanger manufacturers to develop and down-select several designs for the unit that achieves both high performance and low specific cost to retire risks associated with a solar thermal particle/sCO2 power system. This paper describes plans for the construction of a particle sCO2 heat exchanger testbed at Sandia operating above 700 °C and 20 MPa, with the ability to couple directly with a previously-developed falling particle receiver for on-sun testing at the National Solar Thermal Test Facility (NSTTF).

More Details

Design Construction and Operation of a Supercritical Carbon Dioxide (sCO2) Loop for Investigation of Dry Cooling and Natural Circulation Potential for Use in Advanced Small Modular Reactors Utilizing sCO2 Power Conversion Cycles

Middleton, Bobby M.; Rodriguez, Salvador B.; Carlson, Matthew D.

This report outlines the work completed for a Laboratory Directed Research and Development project at Sandia National Laboratories from October 2012 through September 2015. An experimental supercritical carbon dioxide (sCO 2 ) loop was designed, built, and o perated. The experimental work demonstrated that sCO 2 can be uti lized as the working fluid in an air - cooled, natural circulation configuration to transfer heat from a source to the ultimate heat sink, which is the surrounding ambient environment in most ca ses. The loop was also operated in an induction - heated, water - cooled configuration that allows for measurements of physical parameters that are difficult to isolate in the air - cooled configuration. Analysis included the development of two computational flu id dynamics models. Future work is anticipated to answer questions that were not covered in this project.

More Details

Cost and performance tradeoffs of alternative solar-driven s-CO2 Brayton cycle configurations

ASME 2015 9th International Conference on Energy Sustainability, ES 2015, collocated with the ASME 2015 Power Conference, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum

Ho, Clifford K.; Carlson, Matthew D.; Garg, Pardeep; Kumar, Pramod

This paper evaluates cost and performance tradeoffs of alternative supercritical carbon dioxide (s-CO2) closed-loop Brayton cycle configurations with a concentrated solar heat source. Alternative s-CO2 power cycle configurations include simple, recompression, cascaded, and partial cooling cycles. Results show that the simple closed-loop Brayton cycle yielded the lowest power-block component costs while allowing variable temperature differentials across the s-CO2 heating source, depending on the level of recuperation. Lower temperature differentials led to higher sensible storage costs, but cycle configurations with lower temperature differentials (higher recuperation) yielded higher cycle efficiencies and lower solar collector and receiver costs. The cycles with higher efficiencies (simple recuperated, recompression, and partial cooling) yielded the lowest overall solar and power-block component costs for a prescribed power output.

More Details
88 Results
88 Results