Publications

16 Results

Search results

Jump to search filters

Effect of Quartz Aperture Covers on the Fluid Dynamics and Thermal Efficiency of Falling Particle Receivers

Journal of Solar Energy Engineering, Transactions of the ASME

Yue, Lindsey; Mills, Brantley M.; Christian, Joshua M.; Ho, Clifford K.

Falling particle receivers are an emerging technology for use in concentrating solar power systems. In this study, quartz half-shells are investigated for use as full or partial aperture covers to reduce receiver thermal losses. Quartz half-shell aperture covers offer the ability to minimally interfere with incoming solar radiation from the heliostat field while obstructing thermal radiation and advection from leaving the receiver cavity. The fluid dynamics and heat transfer of a receiver subdomain and surrounding air are modeled using ANSYS® FLUENT. We compare the percentage of total incident solar power lost due to conduction through the receiver walls, advective losses through the aperture, and radiation exiting the aperture. Contrary to expected outcomes, results show that quartz aperture covers can increase radiative losses and result in modest to nonexistent reductions in advective losses. The increased radiative losses are driven by elevated quartz half-shell temperatures and have the potential to be mitigated by active cooling and/or material selection. Quartz half-shell total transmissivity was measured experimentally using a radiometer and the National Solar Thermal Test Facility heliostat field with values up to 0.97 ± 0.01. Quartz half-shell aperture covers did not yield expected efficiency gains in numerical results due to increased radiative losses, but efficiency improvement in some numerical results and the performance of quartz half-shells subject to concentrated solar radiation suggest that quartz half-shell aperture covers should be investigated further.

More Details

Optimizing a falling particle receiver geometry using CFD simulations to maximize the thermal efficiency

AIP Conference Proceedings

Mills, Brantley M.; Schroeder, Benjamin B.; Yue, Lindsey; Shaeffer, Reid; Ho, Clifford K.

A strategy to optimize the thermal efficiency of falling particle receivers (FPRs) in concentrating solar power applications is described in this paper. FPRs are a critical component of a falling particle system, and receiver designs with high thermal efficiencies (~90%) for particle outlet temperatures > 700°C have been targeted for next generation systems. Advective losses are one of the most significant loss mechanisms for FPRs. Hence, this optimization aims to find receiver geometries that passively minimize these losses. The optimization strategy consists of a series of simulations varying different geometric parameters on a conceptual receiver design for the Generation 3 Particle Pilot Plant (G3P3) project using simplified CFD models to model the flow. A linear polynomial surrogate model was fit to the resulting data set, and a global optimization routine was then executed on the surrogate to reveal an optimized receiver geometry that minimized advective losses. This optimized receiver geometry was then evaluated with more rigorous CFD models, revealing a thermal efficiency of 86.9% for an average particle temperature increase of 193.6°C and advective losses less than 3.5% of the total incident thermal power in quiescent conditions.

More Details

Active airflow for reducing advective and particle loss in falling particle receivers

AIP Conference Proceedings

Yue, Lindsey; Shaeffer, Reid; Mills, Brantley M.; Ho, Clifford K.

Two active airflow control methods are investigated to mitigate advective and particle losses from the open aperture of a falling particle receiver. Advective losses can be reduced via active airflow methods. However, in the case of once-through suction, energy lost as enthalpy of hot air due to active airflow needs to be minimized so that thermal efficiency can be maximized. In the case of forced air injection, a properly configured aerowindow can reduce advective losses substantially for calm conditions. Although some improvement is offered in windy conditions, an aerowindow in the presence of winds does not show an ability to mitigate advective losses to values achievable by an aerowindow in the absence of wind. The two active airflow methods considered in this paper both show potential for efficiency improvement, but the improvement many not be justified given the added complexity and cost of implementing an active airflow system. While active airflow methods are tractable for a 1 MWth cavity receiver with a 1 m square aperture, the scalability of these active airflow methods is questionable when considering commercial scale receivers with 10–20 m square apertures or larger.

More Details

Particle flow testing of a multistage falling particle receiver concept: Staggered angle iron receiver (stair)

ASME 2020 14th International Conference on Energy Sustainability, ES 2020

Yue, Lindsey; Schroeder, Nathan; Ho, Clifford K.

Falling particle receivers are an emerging technology for use in concentrating solar power systems. In this work, a staggered angle iron receiver concept is investigated, with the goals of increasing particle curtain stability and opacity in a receiver. The concept consists of angle iron-shaped troughs placed in line with a falling particle curtain in order to collect particles and re-release them, decreasing the downward velocity of the particles and the curtain spread. A particle flow test apparatus has been fabricated. The effect of staggered angle iron trough geometry, orientation, and position on the opacity and uniformity of a falling particle curtain for different particle linear mass flow rates is investigated using the particle flow test apparatus. For the baseline free falling curtain and for different trough configurations, particle curtain transmissivity is measured, and profile images of the particle curtain are taken. Particle mass flow rate and trough position affect curtain transmissivity more than trough orientation and geometry. Optimal trough position for a given particle mass flow rate can result in improved curtain stability and decreased transmissivity. The case with a slot depth of 1/4”, hybrid trough geometry at 36” below the slot resulted in the largest improvement over the baseline curtain: 0.40 transmissivity for the baseline and 0.14 transmissivity with the trough. However, some trough configurations have a detrimental effect on curtain stability and result in increased curtain transmissivity and/or substantial particle bouncing.

More Details

Modeling the thermal performance of falling particle receivers subject to external wind

ASME 2019 13th International Conference on Energy Sustainability, ES 2019, collocated with the ASME 2019 Heat Transfer Summer Conference

Mills, Brantley; Shaeffer, Reid; Ho, Clifford K.; Yue, Lindsey

Falling particle receivers (FPRs) are an important component of future falling particle concentrating solar power plants to enable next-generation energy generation. High thermal efficiencies in a FPR are required to high thermodynamic efficiencies of the system. External winds can significantly impact the thermal performance of cavity-type FPRs primarily through changing the air flow in and out of the aperture. A numerical parametric study is performed in this paper to quantify the effect of wind on the thermal performance of a FPR. Wind direction was found to be a significant parameter that can affect the receiver thermal efficiency. The particle mass flow rate did not significantly change the overall effect of wind on the receiver. The receiver efficiency was strong function of the particle diameter, but this was primarily a result of varying curtain opacity with different diameters and not from varying effects with wind. Finally, the model was used to demonstrate that receiver efficiencies of 90% were achievable under the assumption that the effect of wind/advective losses were mitigated.

More Details

Effect of quartz aperture covers on the fluid dynamics and thermal efficiency of falling particle receivers

ASME 2019 13th International Conference on Energy Sustainability, ES 2019, collocated with the ASME 2019 Heat Transfer Summer Conference

Yue, Lindsey; Mills, Brantley M.; Ho, Clifford K.

Falling particle receivers are an emerging technology for use in concentrating solar power systems. In this work, quartz tubes cut in half to form tube shells (referred to as quartz half-shells) are investigated for use as a full or partial aperture cover to reduce radiative and advective losses from the receiver. A receiver subdomain and surrounding air volume are modeled using ANSYS® Fluent®. The model is used to simulate fluid dynamics and heat transfer for the following cases: (1) open aperture, (2) aperture fully covered by quartz half-shells, and (3) aperture partially covered by quartz half-shells. We compare the percentage of total incident solar power lost due to conduction through the receiver walls, advective losses through the aperture, and radiation exiting out of the aperture. Contrary to expected outcomes, simulation results using the simplified receiver subdomain show that quartz aperture covers can increase radiative losses and, in the partially covered case, also increase advective losses. These increased heat losses are driven by elevated quartz half-shell temperatures and have the potential to be mitigated by active cooling and/or material selection.

More Details
16 Results
16 Results