Sort by Date
Sort by Title
Standard Format
Show Abstracts
As Citations (APA)
Search results
Jump to search filters
Geissel, Matthias G. ; Awe, Thomas J. ; Campbell, Edward M. ; Gomez, Matthew R. ; Harding, Eric H. ; Harvey-Thompson, Adam J. ; Jennings, Christopher A. ; Kimmel, Mark W. ; Lewis, Sean M. ; McBride, Ryan D. ; Peterson, Kyle J. ; Schollmeier, Marius ; Sefkow, Adam B. ; Shores, Jonathon S. ; Sinars, Daniel S. ; Slutz, Stephen A. ; Smith, Ian C. ; Speas, Christopher S. ; Stahoviak, John W. ; Porter, John L.
Rambo, Patrick K. ; Armstrong, Darrell J. ; Schwarz, Jens S. ; Smith, Ian C. ; Shores, Jonathon S. ; Speas, Christopher S. ; Porter, John L.
The Z-Beamlet laser has been operating at Sandia National Laboratories since 2001 to provide a source of laser-generated x-rays for radiography of events on the Z-Accelerator. Changes in desired operational scope have necessitated the increase in pulse duration and energy available from the laser system. This is enabled via the addition of a phase modulated seed laser as an alternative front-end. The practical aspects of deployment are discussed here.
Physical Review Letters
Gomez, Matthew R. ; Jennings, Christopher A. ; Awe, Thomas J. ; Geissel, Matthias G. ; Rovang, Dean C. ; Chandler, Gordon A. ; Cuneo, M.E. ; Harvey-Thompson, Adam J. ; Herrmann, Mark H. ; Hess, Mark H. ; Slutz, Stephen A. ; Johns, Owen J. ; Lamppa, Derek C. ; Martin, Matthew ; McBride, Ryan D. ; Peterson, Kyle J. ; Robertson, Grafton K. ; Rochau, G.A. ; Ruiz, Carlos L. ; Savage, Mark E. ; Sefkow, Adam B. ; Smith, Ian C. ; Stygar, William A. ; Vesey, Roger A. ; Sinars, Daniel S. ; Hahn, Kelly D. ; Hansen, Stephanie B. ; Harding, Eric H. ; Knapp, Patrick K. ; Schmit, Paul S.
This Letter presents results from the first fully integrated experiments testing the magnetized liner inertial fusion concept [S.A. Slutz et al., Phys. Plasmas 17, 056303 (2010)], in which a cylinder of deuterium gas with a preimposed axial magnetic field of 10 T is heated by Z beamlet, a 2.5 kJ, 1 TW laser, and magnetically imploded by a 19 MA current with 100 ns rise time on the Z facility. Despite a predicted peak implosion velocity of only 70 km/s, the fuel reaches a stagnation temperature of approximately 3 keV, with Te ≈ Ti , and produces up to 2e12 thermonuclear DD neutrons. In this study, X-ray emission indicates a hot fuel region with full width at half maximum ranging from 60 to 120 μm over a 6 mm height and lasting approximately 2 ns. The number of secondary deuterium-tritium neutrons observed was greater than 1010 , indicating significant fuel magnetization given that the estimated radial areal density of the plasma is only 2 mg/cm2 .
Ao, Tommy A. ; Harding, Eric H. ; Bailey, James E. ; Desjarlais, Michael P. ; Hansen, Stephanie B. ; Lemke, Raymond W. ; Sinars, Daniel S. ; Rochau, G.A. ; Smith, Ian C. ; Reneker, Joseph R. ; Romero, Dustin H. ; Laros, James H. ; Golovkin, Igor; Gregori, G.
Schollmeier, Marius ; Rambo, Patrick K. ; Schwarz, Jens S. ; Smith, Ian C. ; Porter, John L.
Schollmeier, Marius ; Harding, Eric H. ; Rambo, Patrick K. ; Schwarz, Jens S. ; Shores, Jonathon S. ; Smith, Ian C. ; Speas, Christopher S. ; Stahoviak, John W. ; Porter, John L.
Gomez, Matthew R. ; Slutz, Stephen A. ; Sefkow, Adam B. ; Sinars, Daniel S. ; Hahn, Kelly D. ; Hansen, Stephanie B. ; Harding, Eric H. ; Knapp, Patrick K. ; Schmit, Paul S. ; Jennings, Christopher A. ; Awe, Thomas J. ; Geissel, Matthias G. ; Rovang, Dean C. ; Chandler, Gordon A. ; Cuneo, M.E. ; Harvey-Thompson, Adam J. ; Herrmann, Mark H. ; Lamppa, Derek C. ; Martin, Matthew ; McBride, Ryan D. ; Peterson, Kyle J. ; Porter, John L. ; Rochau, G.A. ; Ruiz, Carlos L. ; Savage, Mark E. ; Smith, Ian C. ; Vesey, Roger A.
Gomez, Matthew R. ; Slutz, Stephen A. ; Sefkow, Adam B. ; Sinars, Daniel S. ; Hahn, Kelly D. ; Hansen, Stephanie B. ; Harding, Eric H. ; Knapp, Patrick K. ; Schmit, Paul S. ; Jennings, Christopher A. ; Awe, Thomas J. ; Geissel, Matthias G. ; Rovang, Dean C. ; Chandler, Gordon A. ; Cuneo, M.E. ; Harvey-Thompson, Adam J. ; Herrmann, Mark H. ; Lamppa, Derek C. ; Martin, Matthew ; McBride, Ryan D. ; Peterson, Kyle J. ; Porter, John L. ; Rochau, G.A. ; Ruiz, Carlos L. ; Savage, Mark E. ; Smith, Ian C. ; Vesey, Roger A.
Peterson, Kyle J. ; Slutz, Stephen A. ; Sinars, Daniel S. ; Sefkow, Adam B. ; Gomez, Matthew R. ; Awe, Thomas J. ; Harvey-Thompson, Adam J. ; Geissel, Matthias G. ; Schmit, Paul S. ; Smith, Ian C. ; McBride, Ryan D. ; Rovang, Dean C. ; Knapp, Patrick K. ; Hansen, Stephanie B. ; Jennings, Christopher A. ; Harding, Eric H. ; Porter, John L. ; Vesey, Roger A. ; Blue, Brent E.; Schroen, Diana G.; Tomlinson, Kurt
Slutz, Stephen A. ; Martin, Matthew ; McBride, Ryan D. ; Rovang, Dean C. ; Sinars, Daniel S. ; Smith, Ian C. ; Sefkow, Adam B. ; Harvey-Thompson, Adam J. ; Awe, Thomas J. ; Cuneo, M.E. ; Geissel, Matthias G. ; Herrmann, Mark H. ; Jennings, Christopher A. ; Lamppa, Derek C.
Geissel, Matthias G. ; Edens, Aaron E. ; Schollmeier, Marius ; Smith, Ian C. ; Shores, Jonathon S. ; Porter, John L.
Proceedings of the APS-SCCM&AIRAPT-24 Joint Conference 2013
Ao, Tommy A. ; Geissel, Matthias G. ; Reneker, Joseph R. ; Kernaghan, M.D. ; Harding, Eric H. ; Bailey, James E. ; Desjarlais, Michael P. ; Hansen, Stephanie B. ; Lemke, Raymond W. ; Rochau, G.A. ; Sinars, Daniel S. ; Smith, Ian C.
Geissel, Matthias G. ; Schollmeier, Marius ; Shores, Jonathon S. ; Smith, Ian C. ; Speas, Christopher S. ; Porter, John L.
Smith, Ian C.
Ao, Tommy A. ; Smith, Ian C. ; Geissel, Matthias G. ; Harding, Eric H. ; Bailey, James E. ; Hansen, Stephanie B. ; Sefkow, Adam B. ; Desjarlais, Michael P. ; Lemke, Raymond W. ; Sinars, Daniel S. ; Rochau, G.A.
Sinars, Daniel S. ; Jobe, Marc R. ; Lamppa, Derek C. ; Lemke, Raymond W. ; Martin, Matthew ; Mckenney, John M. ; Nakhleh, Charles N. ; Owen, Albert C. ; Peterson, Kyle J. ; Herrmann, Mark H. ; Smith, Ian C. ; Vesey, Roger A. ; Slutz, Stephen A. ; Cuneo, M.E. ; McBride, Ryan D. ; Rovang, Dean C. ; Sefkow, Adam B. ; Jennings, Christopher A.
Peterson, Kyle J. ; Nakhleh, Charles N. ; Sinars, Daniel S. ; Yu, Edmund Y. ; Herrmann, Mark H. ; Cuneo, M.E. ; Slutz, Stephen A. ; Smith, Ian C. ; Atherton, B.W. ; Knudson, Marcus D.
Ao, Tommy A. ; Bailey, James E. ; Hansen, Stephanie B. ; Desjarlais, Michael P. ; Geissel, Matthias G. ; Smith, Ian C. ; Sinars, Daniel S. ; Lemke, Raymond W.
Geissel, Matthias G. ; Cox, Carlos M. ; Smith, Ian C. ; Shores, Jonathon S. ; Long, Finis W.
Physics of Plasmas
Sinars, Daniel S. ; Yu, Edmund Y. ; Herrmann, Mark H. ; Cuneo, M.E. ; Slutz, Stephen A. ; Smith, Ian C. ; Atherton, B.W. ; Knudson, Marcus D. ; Nakhleh, Charles N.
This paper explores the role of electro-thermal instabilities on the dynamics of magnetically accelerated implosion systems. Electro-thermal instabilities result from non-uniform heating due to temperature dependence in the conductivity of a material. Comparatively little is known about these types of instabilities compared to the well known Magneto-Rayleigh-Taylor (MRT) instability. We present simulations that show electrothermal instabilities form immediately after the surface material of a conductor melts and can act as a significant seed to subsequent MRT instability growth. We also present the results of several experiments performed on Sandia National Laboratories Z accelerator to investigate signatures of electrothermal instability growth on well characterized initially solid aluminum and copper rods driven with a 20 MA, 100 ns risetime current pulse. These experiments show excellent agreement with electrothermal instability simulations and exhibit larger instability growth than can be explained by MRT theory alone. © 2012 American Institute of Physics.
Geissel, Matthias G. ; Cox, Carlos M. ; Smith, Ian C. ; Shores, Jonathon S. ; Atherton, B.W. ; Long, Finis W.
Ao, Tommy A. ; Harding, Eric H. ; Bailey, James E. ; Sinars, Daniel S. ; Hansen, Stephanie B. ; Desjarlais, Michael P. ; Lemke, Raymond W. ; Geissel, Matthias G. ; Smith, Ian C.
AIP Conference Proceedings
Lemke, R.W.; Martin, M.R.; McBride, Ryan D. ; Davis, Jean-Paul D. ; Knudson, Marcus D. ; Sinars, Daniel S. ; Smith, Ian C. ; Savage, Mark E. ; Stygar, William A. ; Killebrew, K.; Flicker, Dawn G. ; Herrmann, Mark H.
We describe a technique for measuring the pressure and density of a metallic solid, shocklessly compressed to multi-megabar pressure, through x-ray radiography of a magnetically driven, cylindrical liner implosion. Shockless compression of the liner produces material states that correspond approximately to the principal compression isentrope (quasi-isentrope). This technique is used to determine the principal quasi-isentrope of solid beryllium to a peak pressure of 2.4 Mbar from x-ray images of a high current (20 MA), fast (∼100 ns) liner implosion. © 2012 American Institute of Physics.
Schollmeier, Marius ; Speas, Christopher S. ; Atherton, B.W. ; Rambo, Patrick K. ; Schwarz, Jens S. ; Kimmel, Mark W. ; Smith, Ian C. ; Shores, Jonathon S. ; Webb, Timothy J.
Physics of Plasmas
Martin, M.R.; Lemke, Raymond W. ; McBride, Ryan D. ; Davis, Jean-Paul D. ; Dolan, Daniel H. ; Knudson, Marcus D. ; Cochrane, K.R.; Sinars, Daniel S. ; Smith, Ian C. ; Savage, Mark E. ; Stygar, William A. ; Killebrew, K.; Flicker, Dawn G. ; Herrmann, Mark H.
Current pulse shaping techniques, originally developed for planar dynamic material experiments on the Z-machine [M. K. Matzen, Phys. Plasmas 12, 055503 (2005)], are adapted to the design of controlled cylindrical liner implosions. By driving these targets with a current pulse shape that prevents shock formation inside the liner, shock heating is avoided along with the corresponding decrease in electrical conductivity ahead of the magnetic diffusion wave penetrating the liner. This results in an imploding liner with a significant amount of its mass in the solid phase and at multi-megabar pressures. Pressures in the solid region of a shaped pulse driven beryllium liner fielded on the Z-machine are inferred to 5.5 Mbar, while simulations suggest implosion velocities greater than 50 kms-1. These solid liner experiments are diagnosed with multi-frame monochromatic x-ray backlighting which is used to infer the material density and pressure. This work has led to a new platform on the Z-machine that can be used to perform off-Hugoniot measurements at higher pressures than are accessible through magnetically driven planar geometries. © 2012 American Institute of Physics.
Results 101–125 of 183
25 Results per page
50 Results per page
100 Results per page
200 Results per page