Here we used aerosol mass spectrometry coupled with tunable synchrotron photoionization to measure radical and closed-shell species associated with particle formation in premixed flames and during pyrolysis of butane, ethylene, and methane. We analyzed photoionization (PI) spectra for the C7H7 radical to identify the isomers present during particle formation. For the combustion and pyrolysis of all three fuels, the PI spectra can be fit reasonably well with contributions from four radical isomers: benzyl, tropyl, vinylcyclopentadienyl, and o-tolyl. Although there are significant experimental uncertainties in the isomeric speciation of C7H7, the results clearly demonstrate that the isomeric composition of C7H7 strongly depends on the combustion or pyrolysis conditions and the fuel or precursors. Fits to the PI spectra using reference curves for these isomers suggest that all of these isomers may contribute to m/z 91 in butane and methane flames, but only benzyl and vinylcyclopentadienyl contribute to the C7H7 isomer signal in the ethylene flame. Only tropyl and benzyl appear to play a role during pyrolytic particle formation from ethylene, and only tropyl, vinylcyclopentadienyl, and o-tolyl appear to participate during particle formation from butane pyrolysis. There also seems to be a contribution from an isomer with an ionization energy below 7.5 eV for the flames but not for the pyrolysis conditions. Kinetic models with updated and new reactions and rate coefficients for the C7H7 reaction network predict benzyl, tropyl, vinylcyclopentadienyl, and o-tolyl to be the primary C7H7 isomers and predict negligible contributions from other C7H7 isomers. These updated models provide better agreement with the measurements than the original versions of the models but, nonetheless, underpredict the relative concentrations of tropyl, vinylcyclopentadienyl, and o-tolyl in both flames and pyrolysis and overpredict benzyl in pyrolysis. Our results suggest that there are additional important formation pathways for the vinylcyclopentadienyl, tropyl, and o-tolyl radicals and/or loss pathways for the benzyl radical that are currently unaccounted for in the present models.
Concern over Arctic methane (CH4) emissions has increased following recent discoveries of poorly understood sources and predictions that methane emissions from known sources will grow as Arctic temperatures increase. New efforts are required to detect increases and explain sources without being confounded by the multiple sources. Methods for distinguishing different sources are critical. We conducted measurements of atmospheric methane and source tracers and performed baseline global atmospheric modeling to begin assessing the climate impact of changes in atmospheric methane. The goal of this project was to address uncertainties in Arctic methane sources and their potential impact on climate by (1) deploying newly developed trace-gas analyzers for measurements of methane, methane isotopologues, ethane, and other tracers of methane sources in the Barrow, AK, (2) characterizing methane sources using high-resolution atmospheric chemical transport models and tracer measurements, and (3) modeling Arctic climate using the state-of-the-art high- resolution Spectral Element Community Atmosphere Model (CAM-SE).
The complex environments that characterize combustion systems can influence the distribution of gas-phase species, the relative importance of various growth mechanisms and the chemical and physical characteristics of the soot precursors generated. In order to provide molecular insights on the effect of combustion environments on the formation of gas-phase species, in this paper, we study the temporal and spatial dependence of soot precursors growth mechanisms in an ethylene/oxygen/argon counterflow diffusion flame. As computational tools of investigation, we included fluid dynamics simulations and stochastic discrete modeling. Results show the relative importance of various reaction pathways in flame, with the hydrogen-abstraction-acetylene-addition mechanism contributing to the formation of pure hydrocarbons near the stagnation plane, and oxygen chemistry prevailing near the maximum temperature region, where the concentration of atomic oxygen reaches its peak and phenols, ethers and furan-embedded species are formed. The computational results show excellent agreement with measurements obtained using aerosol mass spectrometry coupled with vacuum-ultraviolet photoionization. Knowledge acquired in this study can be used to predict the type of compounds formed in various locations of the flame and eventually provide insights on the environmental parameters that influence the growth of soot precursors. Additionally, the results reported in this paper highlight the importance of modeling counterflow flames in two or three dimensions to capture the spatial dependence of growth mechanisms of soot precursors.
Mystery surrounds the transition from gas-phase hydrocarbon precursors to terrestrial soot and interstellar dust, which are carbonaceous particles formed under similar conditions. Although polycyclic aromatic hydrocarbons (PAHs) are known precursors to high-temperature carbonaceous-particle formation, the molecular pathways that initiate particle formation are unknown. We present experimental and theoretical evidence for rapid molecular clustering–reaction pathways involving radicals with extended conjugation. These radicals react with other hydrocarbon species to form covalently bound complexes that promote further growth and clustering by regenerating resonance-stabilized radicals through low-barrier hydrogen-abstraction and hydrogen-ejection reactions. Such radical–chain reaction pathways may lead to covalently bound clusters of PAHs and other hydrocarbons that would otherwise be too small to condense at high temperatures, thus providing the key mechanistic steps for rapid particle formation and surface growth by hydrocarbon chemisorption.
Analysis systems incorporating atmospheric observations could provide a powerful tool for validating fossil fuel CO2 (ffCO2) emissions reported for individual regions, provided that fossil fuel sources can be separated from other CO2 sources or sinks and atmospheric transport can be accurately accounted for. We quantified ffCO2 by measuring radiocarbon (14C) in CO2, an accurate fossil-carbon tracer, at nine observation sites in California for three months in 2014-15. There is strong agreement between the measurements and ffCO2 simulated using a high-resolution atmospheric model and a spatiotemporally-resolved fossil fuel flux estimate. Inverse estimates of total in-state ffCO2 emissions are consistent with the California Air Resources Board's reported ffCO2 emissions, providing tentative validation of California's reported ffCO2 emissions in 2014-15. Continuing this prototype analysis system could provide critical independent evaluation of reported ffCO2 emissions and emissions reductions in California, and the system could be expanded to other, more data-poor regions.
The Arctic Methane, Carbon Aerosols, and Tracers Study was a measurement campaign at the NOAA Barrow Observatory and DOE ARM North Slope of Alaska sites in Barrow that involved the deployment of instruments to measure CH4, black carbon (BC), and source tracers. The campaign ran from September 1, 2014 to September 1, 2016 and was extended until July 30, 2017.
We have developed and built a small porous-plug burner based on the original McKenna burner design. The new burner generates a laminar premixed flat flame for use in studies of combustion chemistry and soot formation. The size is particularly relevant for space-constrained, synchrotron-based X-ray diagnostics. In this paper, we present details of the design, construction, operation, and supporting infrastructure for this burner, including engineering attributes that enable its small size. We also present data for charactering the flames produced by this burner. These data include temperature profiles for three premixed sooting ethylene/air flames (equivalence ratios of 1.5, 1.8, and 2.1); temperatures were recorded using direct one-dimensional coherent Raman imaging. We include calculated temperature profiles, and, for one of these ethylene/air flames, we show the carbon and hydrogen content of heavy hydrocarbon species measured using an aerosol mass spectrometer coupled with vacuum ultraviolet photoionization (VUV-AMS) and soot-volume-fraction measurements obtained using laser-induced incandescence. In addition, we provide calculated mole-fraction profiles of selected gas-phase species and characteristic profiles for seven mass peaks from AMS measurements. Using these experimental and calculated results, we discuss the differences between standard McKenna burners and the new miniature porous-plug burner introduced here.
We present a critical evaluation of photoionization efficiency (PIE) measurements coupled with aerosol mass spectrometry for the identification of condensed soot-precursor species extracted from a premixed atmospheric-pressure ethylene/oxygen/nitrogen flame. Definitive identification of isomers by any means is complicated by the large number of potential isomers at masses likely to comprise particles at flame temperatures. This problem is compounded using PIE measurements by the similarity in ionization energies and PIE-curve shapes among many of these isomers. Nevertheless, PIE analysis can provide important chemical information. For example, our PIE curves show that neither pyrene nor fluoranthene alone can describe the signal from C16H10 isomers and that coronene alone cannot describe the PIE signal from C24H12 species. A linear combination of the reference PIE curves for pyrene and fluoranthene yields good agreement with flame-PIE curves measured at 202 u, which is consistent with pyrene and fluoranthene being the two major C16H10 isomers in the flame samples, but does not provide definite proof. The suggested ratio between fluoranthene and pyrene depends on the sampling conditions. We calculated the values of the adiabatic-ionization energy (AIE) of 24 C16H10 isomers. Despite the small number of isomers considered, the calculations show that the differences in AIEs between several of the isomers can be smaller than the average thermal energy at room temperature. The calculations also show that PIE analysis can sometimes be used to separate hydrocarbon species into those that contain mainly aromatic rings and those that contain significant aliphatic content for species sizes investigated in this study. Our calculations suggest an inverse relationship between AIE and the number of aromatic rings. We have demonstrated that further characterization of precursors can be facilitated by measurements that test species volatility. (Graph Presented).
We have measured photoionization-efficiency curves for pyrene, fluoranthene, chrysene, perylene, and coronene in the photon energy range of 7.5-10.2 eV and derived their photoionization cross-section curves in this energy range. All measurements were performed using tunable vacuum ultraviolet (VUV) radiation generated at the Advanced Light Source synchrotron at Lawrence Berkeley National Laboratory. The VUV radiation was used for photoionization, and detection was performed using a time-of-flight mass spectrometer. We measured the photoionization efficiency of 2,5-dimethylfuran simultaneously with those of pyrene, fluoranthene, chrysene, perylene, and coronene to obtain references of the photon flux during each measurement from the known photoionization cross-section curve of 2,5-dimethylfuran.
We have made the first continuous measurements of black carbon in Barrow, Alaska at the ARM aerosol-observing site at the NOAA Barrow Observatory using a Single-Particle Soot Photometer (SP2). These data demonstrate that BC particles are extremely small, and a majority of the particles (by number density) are smaller than 0.5 fg, the lower limit of reliability of the SP2. We developed the first numerical model capable of quantitatively reproducing the laser-induced incandescence (LII) and scattering signals produced by the SP2, the industry-standard BC instrument. Our model reproduces the SP2 signal temporally and spectrally and demonstrates that the current SP2 optical design allows substantial contamination of LII on the scattering signal. We ran CAM5-SE in nudged mode, i.e., by constraining the transport used in the model with meteorological data. The results demonstrate the problem observed previously of under-predicting BC at high latitudes. The cause of the discrepancy is currently unknown, but we suspect that it is associated with scavenging and rainout mechanisms.
The understanding of soot formation in combustion processes and the optimization of practical combustion systems require in situ measurement techniques that can provide important characteristics, such as particle concentrations and sizes, under a variety of conditions. Of equal importance are techniques suitable for characterizing soot particles produced from incomplete combustion and emitted into the environment. Additionally, the production of engineered nanoparticles, such as carbon blacks, may benefit from techniques that allow for online monitoring of these processes. In this paper, we review the fundamentals and applications of laser-induced incandescence (LII) for particulate diagnostics in a variety of fields. The review takes into account two variants of LII, one that is based on pulsed-laser excitation and has been mainly used in combustion diagnostics and emissions measurements, and an alternate approach that relies on continuous-wave lasers and has become increasingly popular for measuring black carbon in environmental applications. We also review the state of the art in the determination of physical parameters central to the processes that contribute to the non-equilibrium nanoscale heat and mass balances of laser-heated particles; these parameters are important for LII-signal analysis and simulation. Awareness of the significance of particle aggregation and coatings has increased recently, and the effects of these characteristics on the LII technique are discussed. Because of the range of experimental constraints in the variety of applications for which laser-induced incandescence is suited, many implementation approaches have been developed. This review discusses considerations for selection of laser and detection characteristics to address application-specific needs. The benefits of using LII for measurements of a range of nanoparticles in the fields mentioned above are demonstrated with some typical examples, covering simple flames, internal-combustion engines, exhaust emissions, the ambient atmosphere, and nanoparticle production. We also remark on less well-known studies employing LII for particles suspended in liquids. An important aspect of the paper is to critically assess the improvement in the understanding of the fundamental physical mechanisms at the nanoscale and the determination of underlying parameters; we also identify further research needs in these contexts. Building on this enhanced capability in describing the underlying complex processes, LII has become a workhorse of particulate measurement in a variety of fields, and its utility continues to be expanding. When coupled with complementary methods, such as light scattering, probe-sampling, molecular-beam techniques, and other nanoparticle instrumentation, new directions for research and applications with LII continue to materialize.
We have used a Single-Particle Soot Photometer (SP2) to measure time-resolved laser-induced incandescence (LII) and laser scatter from combustion-generated mature soot with a fractal dimension of 1.88 extracted from a burner. We have also made measurements on restructured mature-soot particles with a fractal dimension of 2.3-2.4. We reproduced the LII and laser-scatter temporal profiles with an energy- and mass-balance model, which accounted for heating of particles passed through a CW-laser beam over laser-particle interaction times of ~10. μs. The results demonstrate a strong influence of aggregate size and morphology on LII and scattering signals. Conductive cooling competes with absorptive heating on these time scales; the effects are reduced with increasing aggregate size and fractal dimension. These effects can lead to a significant delay in the onset of the LII signal and may explain an apparent low bias in the SP2 measurements for small particle sizes, particularly for fresh, mature soot. The results also reveal significant perturbations to the measured scattering signal from LII interference and suggest rapid expansion of the aggregates during sublimation.
In this project we have developed atmospheric measurement capabilities and a suite of atmospheric modeling and analysis tools that are well suited for verifying emissions of green- house gases (GHGs) on an urban-through-regional scale. We have for the first time applied the Community Multiscale Air Quality (CMAQ) model to simulate atmospheric CO2 . This will allow for the examination of regional-scale transport and distribution of CO2 along with air pollutants traditionally studied using CMAQ at relatively high spatial and temporal resolution with the goal of leveraging emissions verification efforts for both air quality and climate. We have developed a bias-enhanced Bayesian inference approach that can remedy the well-known problem of transport model errors in atmospheric CO2 inversions. We have tested the approach using data and model outputs from the TransCom3 global CO2 inversion comparison project. We have also performed two prototyping studies on inversion approaches in the generalized convection-diffusion context. One of these studies employed Polynomial Chaos Expansion to accelerate the evaluation of a regional transport model and enable efficient Markov Chain Monte Carlo sampling of the posterior for Bayesian inference. The other approach uses de- terministic inversion of a convection-diffusion-reaction system in the presence of uncertainty. These approaches should, in principle, be applicable to realistic atmospheric problems with moderate adaptation. We outline a regional greenhouse gas source inference system that integrates (1) two ap- proaches of atmospheric dispersion simulation and (2) a class of Bayesian inference and un- certainty quantification algorithms. We use two different and complementary approaches to simulate atmospheric dispersion. Specifically, we use a Eulerian chemical transport model CMAQ and a Lagrangian Particle Dispersion Model - FLEXPART-WRF. These two models share the same WRF assimilated meteorology fields, making it possible to perform a hybrid simulation, in which the Eulerian model (CMAQ) can be used to compute the initial condi- tion needed by the Lagrangian model, while the source-receptor relationships for a large state vector can be efficiently computed using the Lagrangian model in its backward mode. In ad- dition, CMAQ has a complete treatment of atmospheric chemistry of a suite of traditional air pollutants, many of which could help attribute GHGs from different sources. The inference of emissions sources using atmospheric observations is cast as a Bayesian model calibration problem, which is solved using a variety of Bayesian techniques, such as the bias-enhanced Bayesian inference algorithm, which accounts for the intrinsic model deficiency, Polynomial Chaos Expansion to accelerate model evaluation and Markov Chain Monte Carlo sampling, and Karhunen-Lo %60 eve (KL) Expansion to reduce the dimensionality of the state space. We have established an atmospheric measurement site in Livermore, CA and are collect- ing continuous measurements of CO2 , CH4 and other species that are typically co-emitted with these GHGs. Measurements of co-emitted species can assist in attributing the GHGs to different emissions sectors. Automatic calibrations using traceable standards are performed routinely for the gas-phase measurements. We are also collecting standard meteorological data at the Livermore site as well as planetary boundary height measurements using a ceilometer. The location of the measurement site is well suited to sample air transported between the San Francisco Bay area and the California Central Valley.
The ionospheric disturbance dynamo signature in geomagnetic variations is investigated using the National Center for Atmospheric Research Thermosphere-Ionosphere-Electrodynamics General Circulation Model. The model results are tested against reference magnetically quiet time observations on 21 June 1993, and disturbance effects were observed on 11 June 1993. The model qualitatively reproduces the observed diurnal and latitude variations of the geomagnetic horizontal intensity and declination for the reference quiet day in midlatitude and low-latitude regions but underestimates their amplitudes. The patterns of the disturbance dynamo signature and its source 'anti-Sq' current system are well reproduced in the Northern Hemisphere. However, the model significantly underestimates the amplitude of disturbance dynamo effects when compared with observations. Furthermore, the largest simulated disturbances occur at different local times than the observations. The discrepancies suggest that the assumed high-latitude storm time energy inputs in the model were not quantitatively accurate for this storm.
This paper presents a derivation of an expression to estimate the accommodation coefficient for gas collisions with a graphite surface, which is meant for use in models of laser-induced incandescence (LII) of soot. Energy transfer between gas molecules and solid surfaces has been studied extensively, and a considerable amount is known about the physical mechanisms important in thermal accommodation. Values of accommodation coefficients currently used in LII models are temperature independent and are based on a small subset of information available in the literature. The expression derived in this study is based on published data from state-to-state gas-surface scattering experiments. The present study compiles data on the temperature dependence of translational, rotational, and vibrational energy transfer for diatomic molecules (predominantly NO) colliding with graphite surfaces. The data were used to infer partial accommodation coefficients for translational, rotational, and vibrational degrees of freedom, which were consolidated to derive an overall accommodation coefficient that accounts for accommodation of all degrees of freedom of the scattered gas distributions. This accommodation coefficient can be used to calculate conductive cooling rates following laser heating of soot particles.