Development of structure-property linkages for damage in crystalline microstructures using Bayesian inference and unsupervised learning
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Minerals, Metals and Materials Series
The structure-property linkage is one of the two most important relationships in materials science besides the process-structure linkage, especially for metals and polycrystalline alloys. The stochastic nature of microstructures begs for a robust approach to reliably address the linkage. As such, uncertainty quantification (UQ) plays an important role in this regard and cannot be ignored. To probe the structure-property linkage, many multi-scale integrated computational materials engineering (ICME) tools have been proposed and developed over the last decade to accelerate the material design process in the spirit of Material Genome Initiative (MGI), notably crystal plasticity finite element model (CPFEM) and phase-field simulations. Machine learning (ML) methods, including deep learning and physics-informed/-constrained approaches, can also be conveniently applied to approximate the computationally expensive ICME models, allowing one to efficiently navigate in both structure and property spaces effortlessly. Since UQ also plays a crucial role in verification and validation for both ICME and ML models, it is important to include UQ in the picture. In this paper, we summarize a few of our recent research efforts addressing UQ aspects of homogenized properties using CPFEM in a big picture context.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Frontiers in Materials
Uncertainty quantification (UQ) plays a major role in verification and validation for computational engineering models and simulations, and establishes trust in the predictive capability of computational models. In the materials science and engineering context, where the process-structure-property-performance linkage is well known to be the only road mapping from manufacturing to engineering performance, numerous integrated computational materials engineering (ICME) models have been developed across a wide spectrum of length-scales and time-scales to relieve the burden of resource-intensive experiments. Within the structure-property linkage, crystal plasticity finite element method (CPFEM) models have been widely used since they are one of a few ICME toolboxes that allows numerical predictions, providing the bridge from microstructure to materials properties and performances. Several constitutive models have been proposed in the last few decades to capture the mechanics and plasticity behavior of materials. While some UQ studies have been performed, the robustness and uncertainty of these constitutive models have not been rigorously established. In this work, we apply a stochastic collocation (SC) method, which is mathematically rigorous and has been widely used in the field of UQ, to quantify the uncertainty of three most commonly used constitutive models in CPFEM, namely phenomenological models (with and without twinning), and dislocation-density-based constitutive models, for three different types of crystal structures, namely face-centered cubic (fcc) copper (Cu), body-centered cubic (bcc) tungsten (W), and hexagonal close packing (hcp) magnesium (Mg). Our numerical results not only quantify the uncertainty of these constitutive models in stress-strain curve, but also analyze the global sensitivity of the underlying constitutive parameters with respect to the initial yield behavior, which may be helpful for robust constitutive model calibration works in the future.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report documents details of the microstructure and mechanical properties of -tin (Sn), that is used in the Tri-lab (Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL)) collaboration project on Multi-phase Tin Strength. We report microstructural features detailing the crystallographic texture and grain morphology of as-received -tin from electron back scatter diffraction (EBSD). Temperature and strain rate dependent mechanical behavior was investigated by multiple compression tests at temperatures of 200K to 400K and strain rates of 0.0001 /s to 100 /s. Tri-lab tin showed significant temperature and strain rate dependent strength with no significant plastic anisotropy. A sample to sample material variation was observed from duplicate compression tests and texture measurements. Compression data was used to calibrate model parameters for temperature and rate dependent strength models, Johnson-Cook (JC), Zerilli-Armstrong (ZA) and Preston-Tonks-Wallace (PTW) strength models.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.