Publications

Results 51–94 of 94

Search results

Jump to search filters

Implosion of auto-magnetizing helical liners on the Z facility

Physics of Plasmas

Shipley, Gabriel A.; Awe, Thomas J.; Hutsel, Brian T.; Greenly, John B.; Jennings, Christopher A.; Slutz, Stephen A.

In the first auto-magnetizing liner implosion experiments on the Z Facility, precompressed internal axial fields near 150 T were measured and 7.2-keV radiography indicated a high level of cylindrical uniformity of the imploding liner's inner surface. An auto-magnetizing (AutoMag) liner is made of discrete metallic helical conductors encapsulated in insulating material. Here, the liner generates internal axial magnetic field as a 1–2 MA, 100–200 ns current prepulse flows through the helical conductors. After the prepulse, the fast-rising main current pulse causes the insulating material between the metallic helices to break down ceasing axial field production. After breakdown, the helical liner, nonuniform in both density and electrical conductivity, implodes in 100 ns. In-flight radiography data demonstrate that while the inner wall maintains cylindrical uniformity, multiple new helically oriented structures are self-generated within the outer liner material layers during the implosion; this was not predicted by simulations. Furthermore, liner stagnation was delayed compared to simulation predictions. An analytical implosion model is compared with experimental data and preshot simulations to explore how changes in the premagnetization field strength and drive current affect the liner implosion trajectory. Both the measurement of >100 T internal axial field production and the demonstration of cylindrical uniformity of the imploding liner's inner wall are encouraging for promoting the use of AutoMag liners in future MagLIF experiments.

More Details

100 GW linear transformer driver cavity: Design, simulations, and performance 100 GW LINEAR TRANSFORMER DRIVER CAVITY: ⋯ J. D. DOUGLASS et al

Physical Review Accelerators and Beams

Douglass, Jonathan; Hutsel, Brian T.; Leckbee, Joshua; Mulville, Thomas D.; Stoltzfus, Brian; Savage, Mark E.; Breden, Eric W.; Calhoun, Jacob D.; Cuneo, Michael E.; De Smet, Dennis; Hohlfelder, Robert J.; Jaramillo, Deanna M.; Johns, Owen; Lombrozo, Aaron C.; Lucero, Diego; Moore, James M.; Porter, John L.; Radovich, Shawn; Sceiford, M.E.; Sullivan, Michael A.; Walker, Charles; Yazzie, Nicole T.

Herein we present details of the design, simulation, and performance of a 100-GW linear transformer driver (LTD) cavity at Sandia National Laboratories. The cavity consists of 20 "bricks." Each brick is comprised of two 80 nF, 100 kV capacitors connected electrically in series with a custom, 200 kV, three-electrode, field-distortion gas switch. The brick capacitors are bipolar charged to ±100 kV for a total switch voltage of 200 kV. Typical brick circuit parameters are 40 nF capacitance (two 80 nF capacitors in series) and 160 nH inductance. The switch electrodes are fabricated from a WCu alloy and are operated with breathable air. Over the course of 6,556 shots the cavity generated a peak electrical current and power of 1.03 MA (±1.8%) and 106 GW (±3.1%). Experimental results are consistent (to within uncertainties) with circuit simulations for normal operation, and expected failure modes including prefire and late-fire events. New features of this development that are reported here in detail include: (1) 100 ns, 1 MA, 100-GW output from a 2.2 m diameter LTD into a 0.1 Ω load, (2) high-impedance solid charging resistors that are optimized for this application, and (3) evaluation of maintenance-free trigger circuits using capacitive coupling and inductive isolation.

More Details

Enhancing performance of magnetized liner inertial fusion at the Z facility

Physics of Plasmas

Slutz, Stephen A.; Gomez, Matthew R.; Hansen, Stephanie B.; Harding, Eric H.; Hutsel, Brian T.; Knapp, P.F.; Lamppa, Derek C.; Awe, Thomas J.; Ampleford, David J.; Bliss, David E.; Chandler, Gordon A.; Cuneo, Michael E.; Geissel, Matthias; Glinsky, Michael E.; Hahn, Kelly D.; Harvey-Thompson, Adam J.; Hess, Mark H.; Jennings, Christopher A.; Jones, Brent M.; Laity, George R.; Martin, Matthew R.; Peterson, K.J.; Porter, John L.; Rambo, Patrick K.; Rochau, G.A.; Rovang, Dean C.; Ruiz, Carlos L.; Savage, Mark E.; Schwarz, Jens; Schmit, Paul; Shipley, Gabriel A.; Sinars, Daniel; Smith, Ian C.; Stygar, William; Vesey, Roger A.; Weis, Matthew R.

The Magnetized Liner Inertial Fusion concept (MagLIF) [Slutz et al., Phys. Plasmas 17, 056303 (2010)] is being studied on the Z facility at Sandia National Laboratories. Neutron yields greater than 1012 have been achieved with a drive current in the range of 17-18 MA and pure deuterium fuel [Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]. We show that 2D simulated yields are about twice the best yields obtained on Z and that a likely cause of this difference is the mix of material into the fuel. Mitigation strategies are presented. Previous numerical studies indicate that much larger yields (10-1000 MJ) should be possible with pulsed power machines producing larger drive currents (45-60 MA) than can be produced by the Z machine [Slutz et al., Phys. Plasmas 23, 022702 (2016)]. To test the accuracy of these 2D simulations, we present modifications to MagLIF experiments using the existing Z facility, for which 2D simulations predict a 100-fold enhancement of MagLIF fusion yields and considerable increases in burn temperatures. Experimental verification of these predictions would increase the credibility of predictions at higher drive currents.

More Details

Current Loss in 0.1 - 100 Terawatt Vacuum Transmission Lines: Experiments and Simulations

Hutsel, Brian T.; Gansz, Jacy N.; Jaramillo, Deanna M.; Lucero, Diego; Moore, James M.; Rose, David; Stygar, William A.

Current loss in magnetically insulated transmission lines (MITLs) was investigated using data from experiments conducted on Z and Mykonos. Data from experiments conducted on Z were used to optimize an ion diode current loss model that has been implemented into the transmission line circuit model of Z. Details on the current loss model and comparisons to data from Z experiments have been previously published in a peer-reviewed journal [Hutsel, et al., Phys. Rev. Accel. Beams 21, 030401]. Dedicated power flow experiments conducted on Mykonos investigated current loss in a millimeter-scale anode-cathode gap MITL operated at lineal current densities greater than 410 kA/cm and with electric field stresses in excess of 240 kV/cm where it is expected that both anode and cathode plasmas are formed. The experiment MITLs were exposed to varying vacuum conditions; including vacuum pressure at shot time, time under vacuum, and vacuum storage protocols. The results indicate that the vacuum conditions have an effect on current loss in high lineal current density MITLs.

More Details

Recent Diagnostic Platform Accomplishments for Studying Vacuum Power Flow Physics at the Sandia Z Accelerator

Laity, George R.; Aragon, Carlos; Bennett, Nichelle L.; Bliss, David E.; Foulk, James W.; Fierro, Andrew S.; Gomez, Matthew R.; Hess, Mark H.; Hutsel, Brian T.; Jennings, Christopher A.; Johnston, Mark D.; Kossow, Michael R.; Lamppa, Derek C.; Martin, Matthew R.; Patel, Sonal G.; Porwitzky, Andrew J.; Robinson, Allen C.; Rose, David; Vandevender, Pace; Waisman, Eduardo M.; Webb, Timothy J.; Welch, Dale; Rochau, G.A.; Savage, Mark E.; Stygar, William; White, William M.; Sinars, Daniel; Cuneo, Michael E.

Abstract not provided.

Megagauss-level magnetic field production in cm-scale auto-magnetizing helical liners pulsed to 500 kA in 125 ns

Physics of Plasmas

Shipley, Gabriel A.; Awe, Thomas J.; Hutsel, Brian T.; Slutz, Stephen A.; Lamppa, Derek C.; Greenly, J.B.; Hutchinson, Trevor M.

Auto-magnetizing (AutoMag) liners [Slutz et al., Phys. Plasmas 24, 012704 (2017)] are designed to generate up to 100 T of axial magnetic field in the fuel for Magnetized Liner Inertial Fusion [Slutz et al., Phys. Plasmas 17, 056303 (2010)] without the need for external field coils. AutoMag liners (cylindrical tubes) are composed of discrete metallic helical conduction paths separated by electrically insulating material. Initially, helical current in the AutoMag liner produces internal axial magnetic field during a long (100 to 300 ns) current prepulse with an average current rise rate d I / d t = 5 k A / n s. After the cold fuel is magnetized, a rapidly rising current (200 k A / n s) generates a calculated electric field of 64 M V / m between the helices. Such field is sufficient to force dielectric breakdown of the insulating material after which liner current is reoriented from helical to predominantly axial which ceases the AutoMag axial magnetic field production mechanism and the z-pinch liner implodes. Proof of concept experiments have been executed on the Mykonos linear transformer driver to measure the axial field produced by a variety of AutoMag liners and to evaluate what physical processes drive dielectric breakdown. A range of field strengths have been generated in various cm-scale liners in agreement with magnetic transient simulations including a measured field above 90 T at I = 350 kA. By varying the helical pitch angle, insulator material, and insulator geometry, favorable liner designs have been identified for which breakdown occurs under predictable and reproducible field conditions.

More Details

Design and testing of a magnetically driven implosion peak current diagnostic

Physics of Plasmas

Hess, Mark H.; Peterson, K.J.; Ampleford, David J.; Hutsel, Brian T.; Jennings, Christopher A.; Gomez, Matthew R.; Foulk, James W.; Robertson, G.K.; Payne, Sheri L.; Stygar, William A.; Martin, Matthew R.; Sinars, Daniel

We report that a critical component of the magnetically driven implosion experiments at Sandia National Laboratories is the delivery of high-current, 10s of MA, from the Z pulsed power facility to a target. In order to assess the performance of the experiment, it is necessary to measure the current delivered to the target. Recent Magnetized Liner Inertial Fusion (MagLIF) experiments have included velocimetry diagnostics, such as PDV (Photonic Doppler Velocimetry) or Velocity Interferometer System for Any Reflector, in the final power feed section in order to infer the load current as a function of time. However, due to the nonlinear volumetrically distributed magnetic force within a velocimetry flyer, a complete time-dependent load current unfold is typically a time-intensive process and the uncertainties in the unfold can be difficult to assess. In this paper, we discuss how a PDV diagnostic can be simplified to obtain a peak current by sufficiently increasing the thickness of the flyer. This effectively keeps the magnetic force localized to the flyer surface, resulting in fast and highly accurate measurements of the peak load current. Additionally, we show the results of experimental peak load current measurements from the PDV diagnostic in recent MagLIF experiments.

More Details

Transmission-line-circuit model of an 85-TW, 25-MA pulsed-power accelerator

Physical Review Accelerators and Beams

Hutsel, Brian T.; Corcoran, Patrick A.; Cuneo, Michael E.; Gomez, Matthew R.; Hess, Mark H.; Hinshelwood, David D.; Jennings, Christopher A.; Laity, George R.; Lamppa, Derek C.; Mcbride, Ryan; Moore, James M.; Myers, A.; Rose, David; Slutz, Stephen A.; Stygar, William A.; Waisman, Eduardo M.; Welch, Dale; Whitney, B.A.

We have developed a physics-based transmission-line-circuit model of the Z pulsed-power accelerator. The 33-m-diameter Z machine generates a peak electrical power as high as 85 TW, and delivers as much as 25 MA to a physics load. The circuit model is used to design and analyze experiments conducted on Z. The model consists of 36 networks of transmission-line-circuit elements and resistors that represent each of Zs 36 modules. The model of each module includes a Marx generator, intermediate-energy-storage capacitor, laser-triggered gas switch, pulse-forming line, self-break water switches, and tri-plate transmission lines. The circuit model also includes elements that represent Zs water convolute, vacuum insulator stack, four parallel outer magnetically insulated vacuum transmission lines (MITLs), double-post-hole vacuum convolute, inner vacuum MITL, and physics load. Within the vacuum-transmission-line system the model conducts analytic calculations of current loss. To calculate the loss, the model simulates the following processes: (i) electron emission from MITL cathode surfaces wherever an electric-field threshold has been exceeded; (ii) electron loss in the MITLs before magnetic insulation has been established; (iii) flow of electrons emitted by the outer-MITL cathodes after insulation has been established; (iv) closure of MITL anode-cathode (AK) gaps due to expansion of cathode plasma; (v) energy loss to MITL conductors operated at high lineal current densities; (vi) heating of MITL-anode surfaces due to conduction current and deposition of electron kinetic energy; (vii) negative-space-charge-enhanced ion emission from MITL anode surfaces wherever an anode-surface-temperature threshold has been exceeded; and (viii) closure of MITL AK gaps due to expansion of anode plasma. The circuit model is expected to be most accurate when the fractional current loss is small. We have performed circuit simulations of 52 Z experiments conducted with a variety of accelerator configurations and load-impedance time histories. For these experiments, the apparent fractional current loss varies from 0% to 20%. Results of the circuit simulations agree with data acquired on 52 shots to within 2%.

More Details

A Path to Increased Performance in Magnetized Liner Inertial Fusion

Gomez, Matthew R.; Slutz, Stephen A.; Jennings, Christopher A.; Harvey-Thompson, Adam J.; Weis, Matthew R.; Lamppa, Derek C.; Hutsel, Brian T.; Ampleford, David J.; Awe, Thomas J.; Bliss, David E.; Chandler, Gordon A.; Geissel, Matthias; Hahn, Kelly; Hansen, Stephanie B.; Harding, Eric H.; Hess, Mark H.; Knapp, P.F.; Laity, George R.; Martin, Matthew R.; Nagayama, Taisuke; Rovang, Dean C.; Ruiz, Carlos L.; Savage, Mark E.; Schmit, Paul; Schwarz, Jens; Smith, Ian C.; Vesey, Roger A.; Yu, Edmund; Cuneo, Michael E.; Jones, Brent M.; Peterson, K.J.; Porter, John L.; Rochau, G.A.; Sinars, Daniel; Stygar, William A.

Abstract not provided.

Pulsed power performance of the Z machine: Ten years after the upgrade

IEEE International Pulsed Power Conference

Savage, Mark E.; Austin, Kevin N.; Hutsel, Brian T.; Kamm, Ryan J.; Mckee, G.R.; Stygar, William A.; Wakeland, Peter E.; Wemple, Nathan R.; White, William M.

The Z machine is a 36-module, multi-megavolt, low impedance magnetic pressure driver for high-energy-density physics experiments. In 2007, a major re-build doubled the stored energy and increased the peak current capability of Z. The upgraded system routinely drives 27 MA through low inductance dynamic loads with 110 nanosecond time to peak current. The Z pulsed power system is expected to be prepared for a full-energy experiment every day, with a small (<2%) chance of pulsed power system failure, and ±2 ns timing precision. To maintain that schedule with 20 MJ stored, it becomes essential to minimize failures that can damage hardware. We will show the results of several improvements made to the system that reduce spurious breakdowns and improve precision. In most cases, controlling electric fields is key, both to reliable insulation and to precision switching. The upgraded Z pulsed power system was originally intended to operate with 5 MV peak voltage in the pulse-forming section. Recent operation has been above 6 MV. Critical items in the pulsed power system are the DC-charged Marx generators, oil-water barriers, laser-triggered gas switches, and the vacuum insulator. We will show major improvements to the laser-triggered gas switches, and the water-insulated pulse forming lines, as well as delivered current reproducibility results from user experiments on the machine.

More Details

Pulsed power performance of the Z machine: Ten years after the upgrade

IEEE International Pulsed Power Conference

Savage, Mark E.; Austin, Kevin N.; Hutsel, Brian T.; Kamm, Ryan J.; Mckee, G.R.; Stygar, William A.; Wakeland, Peter E.; White, William M.

The Z machine is a 36-module, multi-megavolt, low impedance magnetic pressure driver for high-energy-density physics experiments. In 2007, a major re-build doubled the stored energy and increased the peak current capability of Z. The upgraded system routinely drives 27 MA through low inductance dynamic loads with 110 nanosecond time to peak current. The Z pulsed power system is expected to be prepared for a full-energy experiment every day, with a small (<2%) chance of pulsed power system failure, and ±2 ns timing precision. To maintain that schedule with 20 MJ stored, it becomes essential to minimize failures that can damage hardware. We will show the results of several improvements made to the system that reduce spurious breakdowns and improve precision. In most cases, controlling electric fields is key, both to reliable insulation and to precision switching. The upgraded Z pulsed power system was originally intended to operate with 5 MV peak voltage in the pulse-forming section. Recent operation has been above 6 MV. Critical items in the pulsed power system are the DC-charged Marx generators, oil-water barriers, laser-triggered gas switches, and the vacuum insulator. We will show major improvements to the laser-triggered gas switches, and the water-insulated pulse forming lines, as well as delivered current reproducibility results from user experiments on the machine.

More Details

Impedance-matched Marx generators

Physical Review Accelerators and Beams

Stygar, William A.; Lechien, K.R.; Stoltzfus, Brian; Austin, Kevin N.; Breden, Eric W.; Cuneo, Michael E.; Hutsel, Brian T.; Lewis, Scot A.; Mazarakis, Michael G.; Mckee, G.R.; Moore, James M.; Mulville, Thomas D.; Muron, David J.; Reisman, David; Savage, Mark E.; Sceiford, M.E.; Wisher, Matthew L.

We have conceived a new class of prime-power sources for pulsed-power accelerators: impedance-matched Marx generators (IMGs). The fundamental building block of an IMG is a brick, which consists of two capacitors connected electrically in series with a single switch. An IMG comprises a single stage or several stages distributed axially and connected in series. Each stage is powered by a single brick or several bricks distributed azimuthally within the stage and connected in parallel. The stages of a multistage IMG drive an impedance-matched coaxial transmission line with a conical center conductor. When the stages are triggered sequentially to launch a coherent traveling wave along the coaxial line, the IMG achieves electromagnetic-power amplification by triggered emission of radiation. Hence a multistage IMG is a pulsed-power analogue of a laser. To illustrate the IMG approach to prime power, we have developed conceptual designs of two ten-stage IMGs with LC time constants on the order of 100 ns. One design includes 20 bricks per stage, and delivers a peak electrical power of 1.05 TW to a matched-impedance 1.22-Ω load. The design generates 113 kV per stage and has a maximum energy efficiency of 89%. The other design includes a single brick per stage, delivers 68 GW to a matched-impedance 19-Ω load, generates 113 kV per stage, and has a maximum energy efficiency of 90%. For a given electrical-power-output time history, an IMG is less expensive and slightly more efficient than a linear transformer driver, since an IMG does not use ferromagnetic cores.

More Details

Detection of an anomalous pressure on a magneto-inertial-fusion load current diagnostic

Physics of Plasmas

Hess, Mark H.; Hutsel, Brian T.; Jennings, Christopher A.; Vandevender, J.P.; Sefkow, Adam B.; Gomez, Matthew R.; Knapp, P.F.; Laity, George R.; Foulk, James W.; Lamppa, Derek C.; Peterson, K.J.; Stygar, William A.; Sinars, Daniel

Recent Magnetized Liner Inertial Fusion experiments at the Sandia National Laboratories Z pulsed power facility have featured a PDV (Photonic Doppler Velocimetry) diagnostic in the final power feed section for measuring load current. In this paper, we report on an anomalous pressure that is detected on this PDV diagnostic very early in time during the current ramp. Early time load currents that are greater than both B-dot upstream current measurements and existing Z machine circuit models by at least 1 MA would be necessary to describe the measured early time velocity of the PDV flyer. This leads us to infer that the pressure producing the early time PDV flyer motion cannot be attributed to the magnetic pressure of the load current but rather to an anomalous pressure. Using the MHD code ALEGRA, we are able to compute a time-dependent anomalous pressure function, which when added to the magnetic pressure of the load current, yields simulated flyer velocities that are in excellent agreement with the PDV measurement. As a result, we also provide plausible explanations for what could be the origin of the anomalous pressure.

More Details

Detection of an anomalous pressure on a magneto-inertial-fusion load current diagnostic

Physics of Plasmas

Hess, Mark H.; Hutsel, Brian T.; Jennings, Christopher A.; Vandevender, J.P.; Sefkow, Adam B.; Gomez, Matthew R.; Knapp, P.F.; Laity, George R.; Foulk, James W.; Lamppa, Derek C.; Peterson, K.J.; Stygar, William A.; Sinars, Daniel

Recent Magnetized Liner Inertial Fusion experiments at the Sandia National Laboratories Z pulsed power facility have featured a PDV (Photonic Doppler Velocimetry) diagnostic in the final power feed section for measuring load current. In this paper, we report on an anomalous pressure that is detected on this PDV diagnostic very early in time during the current ramp. Early time load currents that are greater than both B-dot upstream current measurements and existing Z machine circuit models by at least 1 MA would be necessary to describe the measured early time velocity of the PDV flyer. This leads us to infer that the pressure producing the early time PDV flyer motion cannot be attributed to the magnetic pressure of the load current but rather to an anomalous pressure. Using the MHD code ALEGRA, we are able to compute a time-dependent anomalous pressure function, which when added to the magnetic pressure of the load current, yields simulated flyer velocities that are in excellent agreement with the PDV measurement. We also provide plausible explanations for what could be the origin of the anomalous pressure.

More Details

Auto-magnetizing liners for magnetized inertial fusion

Physics of Plasmas

Slutz, Stephen A.; Jennings, Christopher A.; Awe, Thomas J.; Shipley, Gabriel A.; Hutsel, Brian T.; Lamppa, Derek C.

The MagLIF (Magnetized Liner Inertial Fusion) concept [Slutz et al., Phys. Plasmas 17, 056303 (2010)] has demonstrated fusion-relevant plasma conditions [Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z accelerator using external field coils to magnetize the fuel before compression. We present a novel concept (AutoMag), which uses a composite liner with helical conduction paths separated by insulating material to provide fuel magnetization from the early part of the drive current, which by design rises slowly enough to avoid electrical breakdown of the insulators. Once the magnetization field is established, the drive current rises more quickly, which causes the insulators to break down allowing the drive current to follow an axial path and implode the liner in the conventional z-pinch manner. There are two important advantages to AutoMag over external field coils for the operation of MagLIF. Low inductance magnetically insulated power feeds can be used to increase the drive current, and AutoMag does not interfere with diagnostic access. Also, AutoMag enables a pathway to energy applications for MagLIF, since expensive field coils will not be damaged each shot. Finally, it should be possible to generate Field Reversed Configurations (FRC) by using both external field coils and AutoMag in opposite polarities. This would provide a means to studying FRC liner implosions on the 100 ns time scale.

More Details

Daily operation of Z: an 80 TW 36-module pulsed power driver

Savage, Mark E.; Cuneo, Michael E.; Davis, Jean-Paul; Hutsel, Brian T.; Jones, Michael; Jones, Peter; Kamm, Ryan J.; Lopez, Michael R.; Matzen, M.K.; Mcdaniel, D.H.; Mckee, G.R.; Maenchen, J.E.; Owen, A.C.; Porter, John L.; Prestwich, K.R.; Schwarz, Jens; Sinars, Daniel; Stoltzfus, Brian; Struve, Kenneth; Stygar, William A.; Wakeland, Peter E.; White, William M.

Abstract not provided.

Auto-magnetizing (AutoMag) liners for MagLIF: Helically-wound composite liners

Awe, Thomas J.; Shipley, Gabriel A.; Hutchinson, Trevor M.; Hutsel, Brian T.; Jaramillo, Deanna M.; Jennings, Christopher A.; Lamppa, Derek C.; Lucero, Diego; Lucero, Larry; Mcbride, Ryan; Slutz, Stephen A.

Magnetized Liner Inertial Fusion (MagLIF) is an inertial confinement fusion (ICF) concept that includes a strong magnetic field embedded in the fuel to mitigate thermal conduction loss during the implosion. MagLIF experiments on Sandia's 20 MA Z Machine uses an external Helmholtz-like coil pair for fuel premagnetization. By contrast, the novel AutoMag concept employs a composite liner (cylindrical tube) with helically oriented conduction paths separated by insulating material to provide axial premagnetization of the fuel. Initially, during a current prepulse that slowly rises to %7E1 MA, current flows helically through the AutoMag liner, and sources the fuel with an axial field. Next, a rapidly rising main current pulse breaks down the insulation and current in the liner becomes purely axial. The liner and premagnetized fuel are then compressed by the rapidly growing azimuthal field external to the liner. This integrated axial-field-production mechanism offers a few potential advantages when compared to the external premagnetization coils. AutoMag can increase drive current to MagLIF experiments by enabling a lower inductance transmission line, provide higher premagnetization field (>30 T), and greatly increase radial x-ray diagnostic access. 3D electromagnetic simulations using ANSYS Maxwell have been completed in order to explore the current distributions within the helical conduction paths, the inter - wire dielectric strength properties, and the thermal properties of the helical conduction paths during premagnetization (%7E1 MA in 100ns). Three liner designs, of varying peak field strength, and associated varying risk of dielectric breakdown, will soon be tested in experiments on the %7E 1 MA, 100ns Mykonos facility. Experiments will measure Bz(t) inside of the line r and assess failure mechanisms.

More Details

Conceptual design of a 10 13 -W pulsed-power accelerator for megajoule-class dynamic-material-physics experiments

Physical Review Accelerators and Beams

Stygar, William A.; Reisman, David; Stoltzfus, Brian; Austin, Kevin N.; Foulk, James W.; Breden, Eric W.; Cooper, R.A.; Cuneo, Michael E.; Davis, Jean-Paul; Ennis, J.B.; Gard, Paul D.; Greiser, G.W.; Gruner, Frederick R.; Haill, Thomas A.; Hutsel, Brian T.; Jones, Peter; Lechien, K.R.; Leckbee, Joshua; Lucero, Diego; Mckee, G.R.; Moore, James M.; Mulville, Thomas D.; Muron, David J.; Root, Seth; Savage, Mark E.; Sceiford, M.E.; Spielman, R.B.; Waisman, Eduardo M.; Wisher, Matthew L.

In this study, we have developed a conceptual design of a next-generation pulsed-power accelerator that is optmized for driving megajoule-class dynamic-material-physics experiments at pressures as high as 1 TPa. The design is based on an accelerator architecture that is founded on three concepts: single-stage electrical-pulse compression, impedance matching, and transit-time-isolated drive circuits. Since much of the accelerator is water insulated, we refer to this machine as Neptune. The prime power source of Neptune consists of 600 independent impedance-matched Marx generators. As much as 0.8 MJ and 20 MA can be delivered in a 300-ns pulse to a 16-mΩ physics load; hence Neptune is a megajoule-class 20-MA arbitrary waveform generator. Neptune will allow the international scientific community to conduct dynamic equation-of-state, phase-transition, mechanical-property, and other material-physics experiments with a wide variety of well-defined drive-pressure time histories. Because Neptune can deliver on the order of a megajoule to a load, such experiments can be conducted on centimeter-scale samples at terapascal pressures with time histories as long as 1 μs.

More Details

Conceptual designs of two petawatt-class pulsed-power accelerators for high-energy-density-physics experiments

Physical Review Special Topics - Accelerators and Beams

Stygar, William A.; Awe, Thomas J.; Bailey, James E.; Breden, Eric W.; Campbell, Edward M.; Cuneo, Michael E.; Fehl, David L.; Gomez, Matthew R.; Hutsel, Brian T.; Jennings, Christopher A.; Jones, Michael; Jones, Peter; Knapp, P.F.; Lash, Joel S.; Leckbee, Joshua; Lewis, Sean M.; Long, Finis W.; Lucero, Diego; Martin, Matthew R.; Matzen, M.K.; Mazarakis, Michael G.; Mcbride, Ryan; Mckee, G.R.; Moore, James M.; Mulville, Thomas D.; Peterson, K.J.; Porter, John L.; Reisman, David; Rochau, G.A.; Savage, Mark E.; Sceiford, M.E.; Schmit, Paul; Schwarz, Jens; Sefkow, Adam B.; Sinars, Daniel; Slutz, Stephen A.; Stoltzfus, Brian; Vesey, Roger A.; Wakeland, Peter E.; Wisher, Matthew L.; Woodworth, J.R.

We have developed conceptual designs of two petawatt-class pulsed-power accelerators: Z 300 and Z 800. The designs are based on an accelerator architecture that is founded on two concepts: single-stage electrical-pulse compression and impedance matching [Phys. Rev. ST Accel. Beams 10, 030401 (2007)]. The prime power source of each machine consists of 90 linear-transformer-driver (LTD) modules. Each module comprises LTD cavities connected electrically in series, each of which is powered by 5-GW LTD bricks connected electrically in parallel. (A brick comprises a single switch and two capacitors in series.) Six water-insulated radial-transmission-line impedance transformers transport the power generated by the modules to a six-level vacuum-insulator stack. The stack serves as the accelerator's water-vacuum interface. The stack is connected to six conical outer magnetically insulated vacuum transmission lines (MITLs), which are joined in parallel at a 10-cm radius by a triple-post-hole vacuum convolute. The convolute sums the electrical currents at the outputs of the six outer MITLs, and delivers the combined current to a single short inner MITL. The inner MITL transmits the combined current to the accelerator's physics-package load. Z 300 is 35 m in diameter and stores 48 MJ of electrical energy in its LTD capacitors. The accelerator generates 320 TW of electrical power at the output of the LTD system, and delivers 48 MA in 154 ns to a magnetized-liner inertial-fusion (MagLIF) target [Phys. Plasmas 17, 056303 (2010)]. The peak electrical power at the MagLIF target is 870 TW, which is the highest power throughout the accelerator. Power amplification is accomplished by the centrally located vacuum section, which serves as an intermediate inductive-energy-storage device. The principal goal of Z 300 is to achieve thermonuclear ignition; i.e., a fusion yield that exceeds the energy transmitted by the accelerator to the liner. 2D magnetohydrodynamic (MHD) simulations suggest Z 300 will deliver 4.3 MJ to the liner, and achieve a yield on the order of 18 MJ. Z 800 is 52 m in diameter and stores 130 MJ. This accelerator generates 890 TW at the output of its LTD system, and delivers 65 MA in 113 ns to a MagLIF target. The peak electrical power at the MagLIF liner is 2500 TW. The principal goal of Z 800 is to achieve high-yield thermonuclear fusion; i.e., a yield that exceeds the energy initially stored by the accelerator's capacitors. 2D MHD simulations suggest Z 800 will deliver 8.0 MJ to the liner, and achieve a yield on the order of 440 MJ. Z 300 and Z 800, or variations of these accelerators, will allow the international high-energy-density-physics community to conduct advanced inertial-confinement-fusion, radiation-physics, material-physics, and laboratory-astrophysics experiments over heretofore-inaccessible parameter regimes.

More Details

Millimeter-Gap Magnetically Insulated Transmission Line Power Flow Experiments

Hutsel, Brian T.

An experiment platform has been designed to study vacuum power flow in magnetically insulated transmission lines (MITLs). The platform was driven by the 400-GW Mykonos-V accelerator. The experiments conducted quantify the current loss in a millimeter-gap MITL with respect to vacuum conditions in the MITL for two different gap distances, 1.0 and 1.3 mm. The current loss for each gap was measured for three different vacuum pump down times. As a ride along experiment, multiple shots were conducted with each set of hardware to determine if there was a conditioning effect to increase current delivery on subsequent shots. The experiment results revealed large differences in performance for the 1.0 and 1.3 mm gaps. The 1.0 mm gap resulted in current loss of 40%-60% of peak current. The 1.3 mm gap resulted in current losses of less than 5% of peak current. Classical MITL models that neglect plasma expansion predict that there should be zero current loss, after magnetic insulation is established, for both of these gaps. The experiments result s indicate that the vacuum pressure or pump down time did not have a significant effect on the measured current loss at vacuum pressures between 1e-4 and 1e-5 Torr. Additionally, there was not repeatable evidence of a conditioning effect that reduced current loss for subsequent full-energy shots on a given set of hardware. It should be noted that the experiments conducted likely did not have large loss contributions due to ion emission from the anode due to the relatively small current densi-ties (25-40 kA/cm) in the MITL that limited the anode temperature rise due to ohmic heating. The results and conclusions from these experiments may have limited applicability to MITLs of high current density (>400 kA/cm) used in the convolute and load region of the Z which experience temperature increases of >400° C and generate ion emission from anode surfaces.

More Details

Conceptual designs of 300-TW and 800-TW pulsed-power accelerators

Stygar, William A.; Fowler, William E.; Gomez, Matthew R.; Harmon, Roger; Herrmann, Mark H.; Huber, Dale L.; Hutsel, Brian T.; Bailey, James E.; Jones, Michael; Jones, Peter; Leckbee, Joshua; Lee, James R.; Lewis, Scot A.; Long, Finis W.; Lopez, Mike R.; Lucero, Diego; Matzen, M.K.; Mazarakis, Michael G.; Mcbride, Ryan; Mckee, G.R.; Nakhleh, Charles; Owen, Albert C.; Rochau, G.A.; Savage, Mark E.; Schwarz, Jens; Sefkow, Adam B.; Sinars, Daniel; Stoltzfus, Brian; Vesey, Roger A.; Wakeland, Peter E.; Cuneo, Michael E.; Flicker, Dawn; Focia, Ronald J.

Abstract not provided.

Results 51–94 of 94
Results 51–94 of 94