Publications

Results 1–25 of 43

Search results

Jump to search filters

Path-Integrated X-Ray Images for Multi-Surface Digital Image Correlation (PI-DIC)

Experimental Mechanics

Jones, Elizabeth M.; Fayad, Samuel S.; Quintana, Enrico C.; Halls, Benjamin R.; Winters, Caroline W.

X-ray imaging offers unique possibilities for Digital Image Correlation (DIC), opening the door for full-field deformation measurements of a test article in complex environments where optical DIC suffers severe biases or is impossible. While X-ray DIC has been performed in the past with standard DIC codes designed for optical images, the path-integrated nature of X-ray images places constraints on the experimental setup, predominantly that only a single surface of interest moves/deforms. These requirements are difficult to realize for many practical situations and limit the amount of information that can be garnered in a single test. Other X-ray based diagnostics such as Digital Volume Correlation (DVC) and Projection DVC (P-DVC) overcome these obstacles, but DVC is limited to quasi-static tests, and both DVC and P-DVC necessitate high-resolution computed tomography (CT) scan(s) and often require a potentially invasive pattern throughout the volume of the specimen. Here this work presents a novel approach to measure time-resolved displacements and strains on multiple surfaces from a single series of 2D, path-integrated (PI) X-ray images, called PI-DIC. The principle of optical flow or conservation of intensity—the foundation of DIC—was reframed for path-integrated images, for an exemplar setup comprised of two plates moving and deforming independently. Synthetic images were generated for rigid translations, rigid rotations, and uniform stretches, where each plate underwent a unique motion/deformation. Experimental specimens were fabricated (either an aluminum plate with tantalum features or a plastic plate with steel features) and the two specimens were independently translated. PI-DIC was successfully demonstrated with the synthetic images and validated with the experimental images. Prescribed displacements were recovered for each plate from the single set of path-integrated, deformed images. Errors were approximately 0.02 px for the synthetic images with 1.5% image noise, and 0.05 px for the experimental images. These results provide the foundation for PI-DIC to measure motion and deformation of multiple, independent surfaces with subpixel accuracy from a single series of path-integrated X-ray images.

More Details

High-Speed X-Ray Stereo Digital Image Correlation in a Shock Tube

Experimental Techniques

James, Jeremy W.; Jones, Elizabeth M.; Quintana, Enrico C.; Lynch, Kyle P.; Halls, Benjamin R.; Wagner, Justin W.

X-ray stereo digital image correlation (DIC) measurements were performed at 10 kHz on the internal surface of a jointed structure in a shock tube at a shock Mach number of 1.42 and compared with optical stereo DIC measurements on the outer, visible surface of the structure. The shock tube environment introduces temperature and density gradients in the gas through which the structure was imaged, resulting in spatial and temporal index of refraction variations. These variations cause bias errors in optical DIC measurements due to beam-steering but have minimal influence on x-ray DIC measurements. These results demonstrate the utility of time-resolved x-ray DIC measurements in complicated environments where optical measurements suffer severe errors and/or are precluded by lack of optical access.

More Details

Quantifying Thermal Output of Energetic Materials (LDRD Final Report)

Kearney, S.P.; Swain, William E.; Stacy, Shawn C.; Halls, Benjamin R.; Wwerik; Marinis, Ryan T.; Richardson, Daniel R.; Marsh, Andrew; Mazumdar, Yi C.

We present the results of an LDRD project, funded by the Nuclear Deterrence IA, to develop capabilities for quantitative assessment of pyrotechnic thermal output. The thermal battery igniter is used as an exemplar system. Experimental methodologies for thermal output evaluation are demonstrated here, which can help designers and engineers better specify pyrotechnic components , provide thermal output guidelines for new formulations, and generate new metrics for assessing component performance and margin given a known failure condition. A heat-transfer analysis confirms that the dominant mode of energy transfer from the pyrotechnic output plume to the heat pellet is conduction via deposition of hot titanium particles. A simple lumped-parameter model of titanium particle heat transfer and a detailed multi-phase model of deposition heat transfer are discussed. Pyrotechnic function, as defined by "go/no-go" standoff testing of a heat pellet, is correlated with experimentally measured igniter plume temperature, titanium metal particle temperature, and energy deposition. Three high-speed thermal diagnostics were developed for this task. A three-color imaging pyrometer, acquiring 100k images per second on three color channels, is deployed for measurement of titanium particle temperatures. Complimentary measurements of the overall igniter plume emission ("color") temperature were conducted using a transmission-grating spectrograph in line-imaging mode. Heat flux and energy deposition to a cold wall at the heat-pellet location were estimated using an eroding thermocouple probe, with a frequency response of ~5 kHz. Ultimate "go/no-go" function in the igniter/heat-pellet system was correlated with quantitative thermal metrics, in particular surface energy deposition and plume color temperature. Titanium metal-particle and plume color temperatures both experience an upper bound approximated by the 3245-K boiling point of TiO2. Average metal-particle temperatures remained nearly constant for all standoff distances at T = 2850 K, ± 300 K, while plume color temperature and heat flux decay with standoff—suggesting that heat-pellet failure results from a drop in metal-particle flux and not particle temperature. At 50% likelihood of heat-pellet failure, peak time-resolved plume color temperatures drop well below TiO2 boiling to ~2000 - 2200 K, near the TiO2 melting point. Estimates of peak heat flux decline from up to 1 GW/m2 for near-field standoffs to below 320 MW/m2 at 50% failure likelihood.

More Details

Extending in situ X-ray Temperature Diagnostics to Internal Components

Halls, Benjamin R.; Henkelis, Susan E.; Lowry, Daniel R.; Rademacher, David R.

Time-resolved X-ray thermometry is an enabling technology for measuring temperature and phase change of components. However, current diagnostic methods are limited in their ability due to the invasive nature of probes or the requirement of coatings and optical access to the component. Our proposed developments overcome these challenges by utilizing X-rays to directly measure the objects temperature. Variable-Temperature X-ray Diffraction (VT-XRD) was performed over a wide range of temperatures and diffraction angles and was performed on several materials to analyze the patterns of the bulk materials for sensitivity. "High-speed" VT-XRD was then performed for a single material over a small range of diffraction angles to see how fast the experiments could be performed, whilst still maintaining peaks sufficiently large enough for analysis.

More Details

Multi-Color Pyrometry of High-speed Ejecta from Pyrotechnic Igniters

AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022

Halls, Benjamin R.; Swain, William E.; Stacy, Shawn C.; Marinis, Ryan T.; Kearney, S.P.

A high-speed, two-color pyrometer was developed and employed to characterize the temperature of the ejecta from pyrotechnic igniters. The pyrometer used a single objective lens, beamsplitter, and two high-speed cameras to maximize the spatial and temporal resolutions. The pyrometer used the integrated intensity of under-resolved particles to maintain a large region of interest to capture more particles. The spectral response of the pyrometer was determined based on the response of each optical component and the total system was calibrated using a black body source to ensure accurate intensity ratios over the range of interest.

More Details

Multi-Color Pyrometry of High-speed Ejecta from Pyrotechnic Igniters

AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022

Halls, Benjamin R.; Swain, William E.; Stacy, Shawn C.; Marinis, Ryan T.; Kearney, S.P.

A high-speed, two-color pyrometer was developed and employed to characterize the temperature of the ejecta from pyrotechnic igniters. The pyrometer used a single objective lens, beamsplitter, and two high-speed cameras to maximize the spatial and temporal resolutions. The pyrometer used the integrated intensity of under-resolved particles to maintain a large region of interest to capture more particles. The spectral response of the pyrometer was determined based on the response of each optical component and the total system was calibrated using a black body source to ensure accurate intensity ratios over the range of interest.

More Details

Bubble Behavior in a Vertically Vibrating Enclosed, Liquid-Filled Cylinder

AIAA Journal

Obenauf, Dayna G.; Halls, Benjamin R.; Torczynski, J.R.

When subjected to certain harmonic oscillations, the gas bubble in a partially liquid-filled, closed, vertical cylinder will break up. Under certain conditions, some of the gas will migrate to the bottom due to Bjerknes forces. At sufficiently large amplitudes, the bubble will break up into gas bubbles at the top and bottom ends of the cylinder. High-speed imaging captured the dynamics of bubble breakup and gas migration. Several parameters were investigated: oscillation frequency, oscillation acceleration, gas volume fraction, and liquid viscosity.

More Details

Pushing the Limits of High-speed X-ray Tomography to See the Unknown

Halls, Benjamin R.; Rahman, Naveed A.; James, Jeremy W.; Reardon, Sam M.; White, Glen W.; Quintana, Enrico C.; Guildenbecher, Daniel R.

First-of-their kind datasets from a high-speed X-ray tomography system were collected, and a novel numerical effort utilizing temporal information to reduce measurement uncertainty was shown. The experimental campaign used three high-speed X-ray imaging systems to collect data at 100 kHz of a scene containing high-velocity objects. The scene was a group of known objects propelled by a 12-gauge shotgun shell reaching speeds of hundreds of meters per second. These data represent a known volume where the individual components are known, with experimental uncertainties that can be used for reconstruction algorithm validation. The numerical effort used synthetic volumes in MATLAB to produce projections along known lines of sight to perform tomographic reconstructions. These projections and reconstructions were performed on a single object at two orientations, representing two timesteps, to increase the reconstruction accuracy.

More Details

Feasibility of X-ray scattering for tracer-free liquid-phase thermometry for multiphase flows

Fuel

Halls, Benjamin R.; Rahman, Naveed A.; Matusik, K.E.; Meyer, T.R.; Kastengren, A.L.

The feasibility of liquid temperature measurements using X-ray scattering is investigated for liquids with varying properties (water, ethanol, and n-dodecane) on beamline 7-BM at the Advanced Photon Source at Argonne National Laboratory. The temperature is inferred through the change in the scattering pattern from the liquid as a function of temperature using partial least squares regression. An accuracy of ∼98% or higher was achieved enabling measurements for a wide range of applications.

More Details

Evaluation of liquid-phase thermometry in impinging jet sprays using synchrotron x-ray scattering

Applied Optics

Rahman, Naveed A.; Halls, Benjamin R.; Matusik, K.E.; Meyer, T.R.; Kastengren, A.L.

Liquid thermometry during primary and secondary breakup of liquid sprays is challenging due to the presence of highly dynamic, optically complex flow features. This work evaluates the use of x-ray scattering from a focused, monochromatic beam of the Advanced Photon Source at Argonne National Laboratory for the measurement of liquid temperatures within the mixing zone of an impinging jet spray. The measured scattering profiles are converted to temperature through a previously developed two-component partial least squares (PLS) regression model. Transmitive mixing during jet merging is inferred through spatial mapping of temperatures within the impingement region. The technique exhibits uncertainties of ±2 K in temperature and 2% in capturing the correct scattering profile, showing its potential utility for probing liquid temperature distributions in multiphase flows.

More Details

Advancing the science of explosive fragmentation and afterburn fireballs though experiments and simulations at the benchtop scale

Guildenbecher, Daniel R.; Dallman, Ann R.; Munz, Elise D.; Halls, Benjamin R.; Jones, Elizabeth M.; Kearney, S.P.; Marinis, Ryan T.; Murzyn, Christopher M.; Richardson, Daniel R.; Perez, Francisco; Reu, Phillip L.; Thompson, Andrew D.; Welliver, Marc W.; Mazumdar, Yi C.; Brown, Alex; Pourpoint, Timothee L.; White, Catriona M.L.; Balachandar, S.; Houim, Ryan W.

Detonation of explosive devices produces extremely hazardous fragments and hot, luminous fireballs. Prior experimental investigations of these post-detonation environments have primarily considered devices containing hundreds of grams of explosives. While relevant to many applications, such large- scale testing also significantly restricts experimental diagnostics and provides limited data for model validation. As an alternative, the current work proposes experiments and simulations of the fragmentation and fireballs from commercial detonators with less than a gram of high explosive. As demonstrated here, reduced experimental hazards and increased optical access significantly expand the viability of advanced imaging and laser diagnostics. Notable developments include the first known validation of MHz-rate optical fragment tracking and the first ever Coherent Anti-Stokes Raman Scattering (CARS) measures of post-detonation fireball temperatures. While certainly not replacing the need for full-scale verification testing, this work demonstrates new opportunities to accelerate developments of diagnostics and predictive models of post-detonation environments.

More Details

Tomographic time-resolved laser-induced incandescence

AIAA Scitech 2020 Forum

Munz, Elise D.; Halls, Benjamin R.; Richardson, Daniel R.; Guildenbecher, Daniel R.; Cenker, Emre; Paciaroni, Megan E.

Three ultra-high-speed, 10 MHz, cameras imaged the time-resolved decay of laser-induced incandescence (LII) from soot in a turbulent non-premixed ethylene jet flame. Cameras were equipped with a stereoscope allowing each CMOS array to capture two separate views of the flame. The resulting six views were reconstructed into a volumetric soot decay series using commercially available DaVis tomographic software by LaVision. Primary soot particle sizes were estimated from the decay time history on a per voxel basis by comparing measured signals to an LII model. Experimentally quantified soot particle sizes agree with existing predictions and previous measurements.

More Details
Results 1–25 of 43
Results 1–25 of 43