Nuclear Magnetic Resonance of Nano-scale Quantum Materials Detected by Nitrogen Vacancy Ensembles in Diamond
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Semiconductor quantum dot devices can be challenging to configure into a regime where they are suitable for qubit operation. This challenge arises from variations in gate control of quantum dot electron occupation and tunnel coupling between quantum dots on a single device or across several devices. Furthermore, a single control gate usually has capacitive coupling to multiple quantum dots and tunnel barriers between dots. If the device operator, be it human or machine, has quantitative knowledge of how gates control the electrostatic and dynamic properties of multiqubit devices, the operator can more quickly and easily navigate the multidimensional gate space to find a qubit operating regime. We have developed and applied image analysis techniques to quantitatively detect where charge offsets from different quantum dots intersect, so called anticrossings. In this document we outline the details of our algorithm for detecting single anticrossings, which has been used to fine-tune the inter-dot tunnel rates for a three quantum dot system. Additionally, we show that our algorithm can detect multiple anticrossings in the same dataset, which can aid in the coarse tuning the electron occupation of multiple quantum dots. We also include an application of cross correlation to the imaging of magnetic fields using nitrogen vacancies.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Applied Physics
A physically unclonable function (PUF) is an embedded hardware security measure that provides protection against counterfeiting. In this article, we present our work on using an array of randomly magnetized micrometer-sized ferromagnetic bars (micromagnets) as a PUF. We employ a 4μm thick surface layer of nitrogen-vacancy (NV) centers in diamond to image the magnetic field from each micromagnet in the array, after which we extract the magnetic polarity of each micromagnet using image analysis techniques. Finally, after evaluating the randomness of the micromagnet array PUF and the sensitivity of the NV readout, we conclude by discussing the possible future enhancements for improved security and magnetic readout.
Abstract not provided.
Abstract not provided.
Applied Physics Letters
As with any quantum computing platform, semiconductor quantum dot devices require sophisticated hardware and controls for operation. The increasing complexity of quantum dot devices necessitates the advancement of automated control software and image recognition techniques for rapidly evaluating charge stability diagrams. We use an image analysis toolbox developed in Python to automate the calibration of virtual gates, a process that previously involved a large amount of user intervention. Moreover, we show that straightforward feedback protocols can be used to simultaneously tune multiple tunnel couplings in a triple quantum dot in a computer automated fashion. Finally, we adopt the use of a "tunnel coupling lever arm" to model the interdot barrier gate response and discuss how it can be used to more rapidly tune interdot tunnel couplings to the gigahertz values that are compatible with exchange gates.
Quantum materials have long promised to revolutionize everything from energy transmission (high temperature superconductors) to both quantum and classical information systems (topological materials). However, their discovery and application has proceeded in an Edisonian fashion due to both an incomplete theoretical understanding and the difficulty of growing and purifying new materials. This project leverages Sandia's unique atomic precision advanced manufacturing (APAM) capability to design small-scale tunable arrays (designer materials) made of donors in silicon. Their low-energy electronic behavior can mimic quantum materials, and can be tuned by changing the fabrication parameters for the array, thereby enabling the discovery of materials systems which can't yet be synthesized. In this report, we detail three key advances we have made towards development of designer quantum materials. First are advances both in APAM technique and underlying mechanisms required to realize high-yielding donor arrays. Second is the first-ever observation of distinct phases in this material system, manifest in disordered 2D sheets of donors. Finally are advances in modeling the electronic structure of donor clusters and regular structures incorporating them, critical to understanding whether an array is expected to show interesting physics. Combined, these establish the baseline knowledge required to manifest the strongly-correlated phases of the Mott-Hubbard model in donor arrays, the first step to deploying APAM donor arrays as analogues of quantum materials.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Nature Communications
The silicon metal-oxide-semiconductor (MOS) material system is a technologically important implementation of spin-based quantum information processing. However, the MOS interface is imperfect leading to concerns about 1/f trap noise and variability in the electron g-factor due to spin-orbit (SO) effects. Here we advantageously use interface-SO coupling for a critical control axis in a double-quantum-dot singlet-triplet qubit. The magnetic fieldorientation dependence of the g-factors is consistent with Rashba and Dresselhaus interface-SO contributions. The resulting all-electrical, two-Axis control is also used to probe the MOS interface noise. The measured inhomogeneous dephasing time, T2m, of 1.6 ?s is consistent with 99.95% 28Si enrichment. Furthermore, when tuned to be sensitive to exchange fluctuations, a quasi-static charge noise detuning variance of 2 μeV is observed, competitive with low-noise reports in other semiconductor qubits. This work, therefore, demonstrates that the MOS interface inherently provides properties for two-Axis qubit control, while not increasing noise relative to other material choices.
Abstract not provided.
Abstract not provided.