Publications

Results 51–75 of 98

Search results

Jump to search filters

Achieving high strength and ductility in traditionally brittle soft magnetic intermetallics via additive manufacturing

Acta Materialia

Babuska, Tomas F.; Wilson, Mark A.; Johnson, Kyle J.; Whetten, Shaun R.; Curry, John C.; Rodelas, Jeffrey R.; Atkinson, Cooper; Lu, Ping L.; Chandross, M.; Krick, Brandon A.; Michael, Joseph R.; Argibay, Nicolas A.; Susan, D.F.; Kustas, Andrew K.

Intermetallic alloys possess exceptional soft magnetic properties, including high permeability, low coercivity, and high saturation induction, but exhibit poor mechanical properties that make them impractical to bulk process and use at ideal compositions. We used laser-based Additive Manufacturing to process traditionally brittle Fe–Co and Fe–Si alloys in bulk form without macroscopic defects and at near-ideal compositions for electromagnetic applications. The binary Fe–50Co, as a model material, demonstrated simultaneous high strength (600–700 MPa) and high ductility (35%) in tension, corresponding to a ∼300% increase in strength and an order-of-magnitude improvement in ductility relative to conventionally processed material. Atomic-scale toughening and strengthening mechanisms, based on engineered multiscale microstructures, are proposed to explain the unusual combination of mechanical properties. This work presents an instance in which metal Additive Manufacturing processes are enabling, rather than limiting, the development of higher-performance alloys.

More Details

Mechanical and Corrosion Properties of Additively Manufactured CoCrFeMnNi High Entropy Alloy

Additive Manufacturing

Melia, Michael A.; Carroll, Jay D.; Whetten, Shaun R.; Esmaeely, Saba N.; Laros, James H.; White, Emma; Anderson, Iver; Chandross, M.; Michael, Joseph R.; Argibay, Nicolas A.; Schindelholz, Eric J.; Kustas, Andrew K.

This study investigates the mechanical and corrosion properties of as-built and annealed equiatomic CoCrFeMnNi alloy produced by laser-based directed energy deposition (DED) Additive Manufacturing (AM). The high cooling rates of DED produced a single-phase, cellular microstructure with cells on the order of 4 μm in diameter and inter-cellular regions that were enriched in Mn and Ni. Annealing created a chemically homogeneous recrystallized microstructure with a high density of annealing twins. The average yield strength of the as-built condition was 424 MPa and exceeded the annealed condition (232 MPa), however; the strain hardening rate was lower for the as-built material stemming from higher dislocation density associated with DED parts and the fine cell size. In general, the yield strength, ultimate tensile strength, and elongation-to-failure for the as-built material exceeded values from previous studies that explored other AM techniques to produce the CoCrFeMnNi alloy. Ductile fracture occurred for all specimens with dimple initiation associated with nanoscale oxide inclusions. The breakdown potential (onset of pitting corrosion) was similar for the as-built and annealed conditions at 0.40 VAg/AgCl when immersed in 0.6 M NaCl. Pit morphology/propagation for the as-built condition exhibited preferential corrosion of inter-cellular Ni/Mn regions leading to a tortuous pit bottom and cover, while the annealed conditions pits resembled lacy pits similar to 304 L steel. A passive oxide film depleted in Cr cations with substantial incorporation of Mn cations is proposed as the primary mechanism for local corrosion susceptibility of the CoCrFeMnNi alloy.

More Details

Correction of specimen strain measurement in Kolsky tension bar experiments on work-hardening materials

International Journal of Impact Engineering

Song, Bo S.; Sanborn, Brett S.; Susan, D.F.; Johnson, Kyle J.; Dabling, Jeffrey D.; Carroll, Jay D.; Brink, Adam R.; Grutzik, Scott J.; Kustas, Andrew K.

Cylindrical dog-bone (or dumbbell) shaped samples have become a common design for dynamic tensile tests of ductile materials with a Kolsky tension bar. When a direct measurement of displacement between the bar ends is used to calculate the specimen strain, the actual strain in the specimen gage section is overestimated due to strain in the specimen shoulder and needs to be corrected. The currently available correction method works well for elastic-perfectly plastic materials but may not be applicable to materials that exhibit significant work-hardening behavior. In this study, we developed a new specimen strain correction method for materials possessing an elastic-plastic with linear work-hardening stress–strain response. A Kolsky tension bar test of a Fe-49Co-2V alloy (known by trade names Hiperco and Permendur) was used to demonstrate the new specimen strain correction method. This new correction method was also used to correct specimen strains in Kolsky tension bar experiments on two other materials: 4140 alloy, and 304L-VAR stainless steel, which had different work-hardening behavior.

More Details

Controlling the extent of atomic ordering in intermetallic alloys through additive manufacturing

Additive Manufacturing

Kustas, Andrew K.; Fancher, Chris M.; Whetten, Shaun R.; Dagel, Daryl D.; Michael, Joseph R.; Susan, D.F.

Control of the atomic structure, as measured by the extent of the embrittling B2 chemically ordered phase, is demonstrated in intermetallic alloys through additive manufacturing (AM) and characterized using high fidelity neutron diffraction. As a layer-by-layer rapid solidification process, AM was employed to suppress the extent of chemically ordered B2 phases in a soft ferromagnetic Fe-Co alloy, as a model material system of interest to electromagnetic applications. The extent of atomic ordering was found to be insensitive to the spatial location within specimens and suggests that the thermal conditions within only a few AM layers were most influential in controlling the microstructure, in agreement with the predictions from a thermal model for welding. Analysis of process parameter effects on ordering found that suppression of B2 phase was the result of an increased average cooling rate during processing. AM processing parameters, namely interlayer interval time and build velocity, were used to systematically control the relative fraction of ordered B2 phase in specimens from 0.49 to 0.72. Hardness of AM specimens was more than 150% higher than conventionally processed bulk material. Implications for tailoring microstructures of intermetallic alloys are discussed.

More Details

Born Qualified Grand Challenge LDRD Final Report

Roach, R.A.; Argibay, Nicolas A.; Allen, Kyle M.; Balch, Dorian K.; Beghini, Lauren L.; Bishop, Joseph E.; Boyce, Brad B.; Brown, Judith A.; Burchard, Ross L.; Chandross, M.; Cook, Adam W.; DiAntonio, Christopher D.; Dressler, Amber D.; Forrest, Eric C.; Ford, Kurtis R.; Ivanoff, Thomas I.; Jared, Bradley H.; Johnson, Kyle J.; Kammler, Daniel K.; Koepke, Joshua R.; Kustas, Andrew K.; Lavin, Judith M.; Leathe, Nicholas L.; Lester, Brian T.; Madison, Jonathan D.; Mani, Seethambal S.; Martinez, Mario J.; Moser, Daniel M.; Rodgers, Theron R.; Seidl, Daniel T.; Brown-Shaklee, Harlan J.; Stanford, Joshua S.; Stender, Michael S.; Sugar, Joshua D.; Swiler, Laura P.; Taylor, Samantha T.; Trembacki, Bradley T.

This SAND report fulfills the final report requirement for the Born Qualified Grand Challenge LDRD. Born Qualified was funded from FY16-FY18 with a total budget of ~$13M over the 3 years of funding. Overall 70+ staff, Post Docs, and students supported this project over its lifetime. The driver for Born Qualified was using Additive Manufacturing (AM) to change the qualification paradigm for low volume, high value, high consequence, complex parts that are common in high-risk industries such as ND, defense, energy, aerospace, and medical. AM offers the opportunity to transform design, manufacturing, and qualification with its unique capabilities. AM is a disruptive technology, allowing the capability to simultaneously create part and material while tightly controlling and monitoring the manufacturing process at the voxel level, with the inherent flexibility and agility in printing layer-by-layer. AM enables the possibility of measuring critical material and part parameters during manufacturing, thus changing the way we collect data, assess performance, and accept or qualify parts. It provides an opportunity to shift from the current iterative design-build-test qualification paradigm using traditional manufacturing processes to design-by-predictivity where requirements are addressed concurrently and rapidly. The new qualification paradigm driven by AM provides the opportunity to predict performance probabilistically, to optimally control the manufacturing process, and to implement accelerated cycles of learning. Exploiting these capabilities to realize a new uncertainty quantification-driven qualification that is rapid, flexible, and practical is the focus of this effort.

More Details

Equal channel angular extrusion for bulk processing of Fe-Co-2V soft magnetic alloys, part II: Texture analysis and magnetic properties

Journal of Materials Research

Kustas, Andrew K.; Michael, Joseph R.; Susan, D.F.; Karaman, Ibrahim; Jozaghi, Taymaz

In Part I, equal channel angular extrusion (ECAE) was demonstrated as a novel, simple-shear deformation process for producing bulk forms of the low ductility Fe-Co-2V (Hiperco 50A®) soft ferromagnetic alloy with refined grain sizes. Microstructures and mechanical properties were discussed. In this Part II contribution, the crystallographic textures and quasi-static magnetic properties of ECAE-processed Hiperco were characterized. The textures were of a simple-shear character defined by partial {110} and (111) fibers inclined relative to the extrusion direction, in agreement with the expectations for simple-shear deformation textures of BCC metals. These textures were observed throughout all processing conditions and only slightly reduced in intensity by subsequent recrystallization heat treatments. Characterization of the magnetic properties revealed a lower coercivity and higher permeability for ECAE-processed Hiperco specimens relative to the conventionally processed and annealed Hiperco bar. The effects of the resultant microstructure and texture on the coercivity and permeability magnetic properties are discussed.

More Details

Achieving Ultralow Wear with Stable Nanocrystalline Metals

Advanced Materials

Curry, John C.; Babuska, Tomas F.; Furnish, Timothy A.; Lu, Ping L.; Adams, David P.; Kustas, Andrew K.; Nation, Brendan L.; Dugger, Michael T.; Chandross, M.; Clark, Blythe C.; Boyce, Brad B.; Schuh, Christopher A.; Argibay, Nicolas A.

Recent work suggests that thermally stable nanocrystallinity in metals is achievable in several binary alloys by modifying grain boundary energies via solute segregation. The remarkable thermal stability of these alloys has been demonstrated in recent reports, with many alloys exhibiting negligible grain growth during prolonged exposure to near-melting temperatures. Pt–Au, a proposed stable alloy consisting of two noble metals, is shown to exhibit extraordinary resistance to wear. Ultralow wear rates, less than a monolayer of material removed per sliding pass, are measured for Pt–Au thin films at a maximum Hertz contact stress of up to 1.1 GPa. This is the first instance of an all-metallic material exhibiting a specific wear rate on the order of 10−9 mm3 N−1 m−1, comparable to diamond-like carbon (DLC) and sapphire. Remarkably, the wear rate of sapphire and silicon nitride probes used in wear experiments are either higher or comparable to that of the Pt–Au alloy, despite the substantially higher hardness of the ceramic probe materials. High-resolution microscopy shows negligible surface microstructural evolution in the wear tracks after 100k sliding passes. Mitigation of fatigue-driven delamination enables a transition to wear by atomic attrition, a regime previously limited to highly wear-resistant materials such as DLC.

More Details
Results 51–75 of 98
Results 51–75 of 98