Deep level defects in wide bandgap semiconductors, whose response times are in the range of power converter switching times, can have a significant effect on converter efficiency. We use deep level transient spectroscopy (DLTS) to evaluate such defect levels in the n-drift layer of vertical gallium nitride (v-GaN) power diodes with VBD ∼1500 V. DLTS reveals three energy levels that are at ∼0.6 eV (highest density), ∼0.27 eV (lowest density), and ∼45 meV (a dopant level) from the conduction band. Dopant extraction from capacitance-voltage measurement tests (C-V) at multiple temperatures enables trap density evaluation, and the ∼0.6 eV trap has a density of 1.2 × 1015 cm-3. The 0.6 eV energy level and its density are similar to a defect that is known to cause current collapse in GaN based surface conducting devices (like high electron mobility transistors). Analysis of reverse bias currents over temperature in the v-GaN diodes indicates a predominant role of the same defect in determining reverse leakage current at high temperatures, reducing switching efficiency.
Ultra-Wide-Bandgap semiconductors hold great promise for future power conversion applications. Figures of Merit (FOMs) are often used as a first means to understand the impact of semiconductor material parameters on power semiconductor performance, and in particular the Unipolar (or Baliga) FOM is often cited for this purpose. However, several factors of importance for Ultra-Wide-Bandgap semiconductors are not considered in the standard treatment of this FOM. For example, the Critical Field approximation has many shortcomings, and alternative transport mechanisms and incomplete dopant ionization are typically neglected. This paper presents the results of a study aimed at incorporating some of these effects into more realistic FOM calculations.
This work investigates both avalanche behavior and failure mechanism of 3 kV GaN-on-GaN vertical P-N diodes, that were fabricated and later tested under unclamped inductive switching (UIS) stress. The goal of this study is to use the particular avalanche characteristics and the failure mechanism to identify issues with the field termination and then provide feedback to improve the device design. DC breakdown is measured at the different temperatures to confirm the avalanche breakdown. Diode's avalanche robustness is measured on-wafer using a UIS test set-up which was integrated with a wafer chuck and CCD camera. Post failure analysis of the diode is done using SEM and optical microscopy to gain insight into the device failure physics.
This project is part of a multi-lab consortium that leverages U.S. research expertise and facilities at national labs and universities to significantly advance electric drive power density and reliability, while simultaneously reducing cost. The final objective of the consortium is to develop a 100 kW traction drive system that achieves 33 kW/L, has an operational life of 300,000 miles, and a cost of less than 6 dollars/kW. One element of the system is a 100 kW inverter with a power density of 100 kW/L and a cost of 2.7 dollars/kW. New materials such as wide-bandgap semiconductors, soft magnetic materials, and ceramic dielectrics, integrated using multi-objective co-optimization design techniques, will be utilized to achieve these program goals. This project focuses on a subset of the power electronics work within the consortium, specifically the design, fabrication, and evaluation of vertical GaN power devices suitable for automotive applications.
This work provides the first demonstration of vertical GaN Junction Barrier Schottky (JBS) rectifiers fabricated by etch and regrowth of p-GaN. A reverse blocking voltage near 1500 V was achieved at 1 mA reverse leakage, with a sub 1 V turn-on and a specific on-resistance of 10 mΩ-cm2. This result is compared to other reported JBS devices in the literature and our device demonstrates the lowest leakage slope at high reverse bias. A large initial leakage current is present near zero-bias which is attributed to a combination of inadequate etch-damage removal and passivation induced leakage current.
This work reports an on-wafer study of avalanche behavior and failure analysis of in-house fabricated 1.3 kV GaN-on-GaN P-N diodes. DC breakdown is measured at different temperatures to confirm avalanche behavior. Diode's avalanche ruggedness is measured directly on-wafer using a modified unclamped inductive switching (UIS) test set-up with an integrated thermal chuck and high-speed CCD for real-time imaging during the test. The avalanche ruggedness of the GaN P-N diode is evaluated and compared with a commercial SiC Schottky diode of similar voltage and current rating. Failure analysis is done using SEM and optical microscopy to gain insight into the diode's failure mechanism during avalanche operation.
This paper describes the development of vertical GaN PN diodes for high-voltage applications. A centerpiece of this work is the creation of a foundry effort that incorporates epitaxial growth, wafer metrology, device design, processing, and characterization, and reliability evaluation and failure analysis. A parallel effort aims to develop very high voltage (up to 20 kV) GaN PN diodes for use as devices to protect the electric grid against electromagnetic pulses.