Publications

Results 326–350 of 363

Search results

Jump to search filters

III-antimonide/nitride based semiconductors for optoelectronic materials and device studies : LDRD 26518 final report

Peake, Gregory M.; Klem, John F.; Modine, Normand A.; Waldrip, Karen E.; Kurtz, S.R.; Allerman, A.A.; Jones, Eric D.

The goal of this LDRD was to investigate III-antimonide/nitride based materials for unique semiconductor properties and applications. Previous to this study, lack of basic information concerning these alloys restricted their use in semiconductor devices. Long wavelength emission on GaAs substrates is of critical importance to telecommunication applications for cost reduction and integration into microsystems. Currently InGaAsN, on a GaAs substrate, is being commercially pursued for the important 1.3 micrometer dispersion minima of silica-glass optical fiber; due, in large part, to previous research at Sandia National Laboratories. However, InGaAsN has not shown great promise for 1.55 micrometer emission which is the low-loss window of single mode optical fiber used in transatlantic fiber. Other important applications for the antimonide/nitride based materials include the base junction of an HBT to reduce the operating voltage which is important for wireless communication links, and for improving the efficiency of a multijunction solar cell. We have undertaken the first comprehensive theoretical, experimental and device study of this material with promising results. Theoretical modeling has identified GaAsSbN to be a similar or potentially superior candidate to InGaAsN for long wavelength emission on GaAs. We have confirmed these predictions by producing emission out to 1.66 micrometers and have achieved edge emitting and VCSEL electroluminescence at 1.3 micrometers. We have also done the first study of the transport properties of this material including mobility, electron/hole mass, and exciton reduced mass. This study has increased the understanding of the III-antimonide/nitride materials enough to warrant consideration for all of the target device applications.

More Details

Final Report on LDRD Project: High-Bandwidth Optical Data Interconnects for Satellite Applications

Sanchez, Victoria; Sullivan, Charles T.; Allerman, A.A.; Rienstra, Jeffrey L.; Serkland, Darwin K.; Geib, Kent M.; Blansett, Ethan; Karpen, Gary D.; Peake, Gregory M.; Hargett, Terry

This report describes the research accomplishments achieved under the LDRD Project ''High-Bandwidth Optical Data Interconnects for Satellite Applications.'' The goal of this LDRD has been to address the future needs of focal-plane-array (FPA) sensors by exploring the use of high-bandwidth fiber-optic interconnects to transmit FPA signals within a satellite. We have focused primarily on vertical-cavity surface-emitting laser (VCSEL) based transmitters, due to the previously demonstrated immunity of VCSELs to total radiation doses up to 1 Mrad. In addition, VCSELs offer high modulation bandwidth (roughly 10 GHz), low power consumption (roughly 5 mW), and high coupling efficiency (greater than -3dB) to optical fibers. In the first year of this LDRD, we concentrated on the task of transmitting analog signals from a cryogenic FPA to a remote analog-to-digital converter. In the second year, we considered the transmission of digital signals produced by the analog-to-digital converter to a remote computer on the satellite. Specifically, we considered the situation in which the FPA, analog-to-digital converter, and VCSEL-based transmitter were all cooled to cryogenic temperatures. This situation requires VCSELs that operate at cryogenic temperature, dissipate minimal heat, and meet the electrical drive requirements in terms of voltage, current, and bandwidth.

More Details

Photonics Integration Devices and Technologies

Vawter, Gregory A.; Lin, Shawn-Yu; Sullivan, Charles T.; Zubrzycki, Walter J.; Chow, Weng W.; Allerman, A.A.; Wendt, Joel R.

We have used selective AlGaAs oxidation, dry-etching, and high-gain semiconductor laser simulation to create new in-plane lasers with interconnecting passive waveguides for use in high-density photonic circuits and future integration of photonics with electronics. Selective oxidation and doping of semiconductor heterostructures have made vertical cavity surface emitting lasers (VCSELs) into the world's most efficient low-power lasers. We apply oxidation technology to improve edge-emitting lasers and photonic-crystal waveguides, making them suitable for monolithic integrated microsystems. Two types of lasers are investigated: (1) a ridge laser with resonant coupling to an output waveguide; (2) a selectively-oxidized laser with a low active volume and potentially sub-milliAmp threshold current. Emphasis is on development of high-performance lasers suited for monolithic integration with photonic circuit elements.

More Details

MOCVD-grown, 1.3 μm InGaAsN multiple quantum well lasers incorporating GaAsP strain-compensation layers

Proceedings of SPIE - The International Society for Optical Engineering

Kurtz, S.R.; Allerman, A.A.; Choquette, Kent D.

InxGa1-xAs1-yNy quaternary alloys offer the promise of longer wavelength, ≥ 1.3 μm optical transceivers grown on GaAs substrates. To achieve acceptable radiative efficiencies at 1.3 μm, highly-strained InGaAsN quantum wells (x ≈ 0.4, y ≈ 0.005) are being developed as laser active regions. By introducing GaAsP layers into the active region for strain-compensation, gain can be increased using multiple InGaAsN quantum wells. In this work, we report the first strain-compensated, 1.3 μm InGaAsN MQW lasers. Our devices were grown by metal-organic chemical vapor deposition. Lasers with InGaAsN quantum well active regions are proving superior to lasers constructed with competing active region materials. Under pulsed operation, our 1.3 μm InGaAsN lasers displayed negligible blue-shift from the low-injection LED emission, and state-of-the-art characteristic temperature (159 K) was obtained for a 1.3 μm laser.

More Details

High-power single mode operation of hybrid ion-implanted/selectively-oxidized VCSELs

Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS

Hadley, G.R.; Choquette, Kent D.; Fischer, Arthur J.; Geib, Kent M.; Allerman, A.A.; Hindi, J.J.

One method of providing the mode selectivity necessary to insure single mode operation in a large diameter VCSEL is to independently control the size of the gain region and that of the optical mode. Numerical simulations quantity this approach by predicting lateral mode discrimination for different sized gain apertures. Calculations are experimentally confirmed by the fabrication and testing of 850 nm VCSELs employing hybrid ion implantation/selective oxidation that produce a single-mode output of more than 5 mW.

More Details

5.2 mW single-mode power from a coupled-resonator vertical-cavity laser

Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS

Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.; Allerman, A.A.; Geib, Kent M.

A record high fundamental-mode power of 5.1 mW was achieved from coupled-resonator vertical-cavity lasers (CRVCLs). In conventional VCSELs, the extent to which the gain volume may be increased is limited by the onset of multi-mode operation. Results indicate that this limitation is circumvented in a coupled-resonator device allowing high power fundamental-mode operation.

More Details

Bistable Output from a Coupled-Resonator Vertical-Cavity Laser Diode

Applied Physics Letters

Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.; Allerman, A.A.; Geib, Kent M.

The authors report a monolithic coupled-resonator vertical-cavity laser with an ion-implanted top cavity and a selectively oxidized bottom cavity which exhibits bistable behavior in the light output versus injection current. Large bistability regions over current ranges as wide as 18 mA have been observed with on/off contrast ratios of greater than 20 dB. The position and width of the bistability region can be varied by changing the bias to the top cavity. Switching between on and off states can be accomplished with changes as small as 250 {micro}W to the electrical power applied to the top cavity. Theoretical analysis suggests that the bistable behavior is the response of the nonlinear susceptibility in the top cavity to the changes in the bottom intracavity laser intensity as the bottom cavity reaches the thermal rollover point.

More Details

Room temperature continuous wave InGaAsN quantum well vertical cavity lasers emitting at 1.3 um

Electronic Letters

Choquette, Kent D.; Geib, Kent M.; Klem, John F.; Fischer, Arthur J.; Spahn, Olga B.; Allerman, A.A.; Fritz, Ian J.; Kurtz, S.R.; Breiland, William G.; Sieg, Robert M.

Selectively oxidized vertical cavity lasers emitting at 1294 nm using InGaAsN quantum wells are reported for the first time which operate continuous wave at and above room temperature. The lasers employ two n-type Al{sub 0.94}Ga{sub 0.06}As/GaAs distributed Bragg reflectors each with a selectively oxidized current aperture adjacent to the optical cavity, and the top output mirror contains a tunnel junction to inject holes into the active region. Continuous wave single mode lasing is observed up to 55 C. These lasers exhibit the longest wavelength reported to date for vertical cavity surface emitting lasers grown on GaAs substrates.

More Details

Minority carrier diffusion, defects, and localization in InGaAsN with 2% nitrogen

Applied Physics Letters

Kurtz, S.R.; Allerman, A.A.; Seager, Carleton H.; Sieg, Robert M.; Jones, Eric D.

Electron and hole transport in compensated, InGaAsN ({approx} 2% N) are examined through Hall mobility, photoconductivity, and solar cell photoresponse measurements. Short minority carrier diffusion lengths, photoconductive-response spectra, and doping dependent, thermally activated Hall mobilities reveal a broad distribution of localized states. At this stage of development, lateral carrier transport appears to be limited by large scale (>> mean free path) material inhomogeneities, not a random alloy-induced mobility edge.

More Details

Composite Resonator Surface Emitting Lasers

Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.; Allerman, A.A.; Geib, Kent M.

The authors have developed electrically-injected coupled-resonator vertical-cavity lasers and have studied their novel properties. These monolithically grown coupled-cavity structures have been fabricated with either one active and one passive cavity or with two active cavities. All devices use a selectively oxidized current aperture in the lower cavity, while a proton implant was used in the active-active structures to confine current in the top active cavity. They have demonstrated optical modulation from active-passive devices where the modulation arises from dynamic changes in the coupling between the active and passive cavities. The laser intensity can be modulated by either forward or reverse biasing the passive cavity. They have also observed Q-switched pulses from active-passive devices with pulses as short as 150 ps. A rate equation approach is used to model the Q-switched operation yielding good agreement between the experimental and theoretical pulseshape. They have designed and demonstrated the operation of active-active devices which la.se simultaneously at both longitudinal cavity resonances. Extremely large bistable regions have also been observed in the light-current curves for active-active coupled resonator devices. This bistability can be used for high contrast switching with contrast ratios as high as 100:1. Coupled-resonator vertical-cavity lasers have shown enhanced mode selectivity which has allowed devices to lase with fundamental-mode output powers as high as 5.2 mW.

More Details

Comparison of fabrication approaches for selectively oxidized VCSEL arrays

Geib, Kent M.; Choquette, Kent D.; Allerman, A.A.; Briggs, Ronald D.; Hindi, Jana J.

The impressive performance improvements of laterally oxidized VCSELs come at the expense of increased fabrication complexity for 2-dimensional arrays. Since the epitaxial layers to be wet-thermally oxidized must be exposed, non-planarity can be an issue. This is particularly important in that electrical contact to both the anode and cathode of the diode must be brought out to a package. They have investigated four fabrication sequences suitable for the fabrication of 2-dimensional VCSEL arrays. These techniques include: mesa etched polymer planarized, mesa etched bridge contacted, mesa etched oxide isolated (where the electrical trace is isolated from the substrate during the oxidation) and oxide/implant isolation (oxidation through small via holes) all of which result in VCSELs with outstanding performance. The suitability of these processes for manufacturing are assessed relative to oxidation uniformity, device capacitance, and structural ruggedness for packaging.

More Details

Effective index model predicts modal frequencies of vertical-cavity lasers

Applied Physics Letters

Serkland, Darwin K.; Hadley, G.R.; Choquette, Kent D.; Geib, Kent M.; Allerman, A.A.

Previously, an effective index optical model was introduced for the analysis of lateral waveguiding effects in vertical-cavity surface-emitting lasers. The authors show that the resultant transverse equation is almost identical to the one typically obtained in the analysis of dielectric waveguide problems, such as a step-index optical fiber. The solution to the transverse equation yields the lateral dependence of the optical field and, as is recognized in this paper, the discrete frequencies of the microcavity modes. As an example, they apply this technique to the analysis of vertical-cavity lasers that contain thin-oxide apertures. The model intuitively explains the experimental data and makes quantitative predictions in good agreement with a highly accurate numerical model.

More Details

Highly-Efficient Buried-Oxide-Waveguide Laser by selective Oxidation

IEEE Photonics Technology Letters

Vawter, Gregory A.; Spahn, Olga B.; Allerman, A.A.

An edge-emitting buried-oxide waveguide (BOW) laser structure employing lateral selective oxidation of AlGaAs layers above and below the active region for waveguiding and current confinement is presented. This laser configuration has the potential for very small lateral optical mode size and high current confinement and is well suited for integrated optics applications where threshold current and overall efficiency are paramount. Optimization of the waveguide design, oxide layer placement, and bi-parabolic grading of the heterointerfaces on both sides of the AlGaAs oxidation layers has yielded 95% external differential quantum efficiency and 40% wall-plug efficiency from a laser that is very simple to fabricate and does not require epitaxial regrowth of any kind.

More Details

Three-dimensional control of light in a two-dimensional photonic crystal slab

Nature

Chow, Kai-Cheung; Allerman, A.A.; Lin, Shawn-Yu; Wendt, Joel R.; Vawter, Gregory A.; Zubrzycki, Walter J.

A two-dimensional (2D) photonic crystal is an attractive alternative and complimentary to its 3D counterpart, due to fabrication simplicity. A 2D crystal, however, confines light only in the 2D plane, but not in the third direction, the z-direction. Earlier experiments show that such a 2D system can exist, providing that the boundary effect in z-direction is negligible and that light is collimated in the 2D plane. Nonetheless, the usefulness of such 2D crystals is limited because they are incapable of guiding light in z-direction, which leads to diffraction loss. This drawback presents a major obstacle for realizing low-loss 2D crystal waveguides, bends and thresholdless lasers. A recent theoretical calculation, though, suggests a novel way to eliminate such a loss with a 2D photonic crystal slab. The concept of a lightcone is introduced as a criterion for fully guiding and controlling light. Although the leaky modes of a crystal slab have been studied, there have until now no experimental reports on probing its guided modes and band gaps. In this paper, a waveguide-coupled 2D photonic crystal slab is successfully fabricated from a GaAs/Al{sub x}O{sub y} material system and its intrinsic transmission properties are studied. The crystal slab is shown to have a strong 2D band gap at {lambda} {approximately} 1.5 {micro}m. Light attenuates as much as {approximately}5dB per period in the gap, the strongest ever reported for any 2D photonic crystal in optical {lambda}. More importantly, for the first time, the crystal slab is shown to be capable of controlling light fully in all three-dimensions. The lightcone criterion is also experimentally confirmed.

More Details

Q-switched operation of a coupled-resonator vertical-cavity laser diode

Applied Physics Letters

Fischer, Arthur J.; Chow, Weng W.; Choquette, Kent D.; Allerman, A.A.; Geib, Kent M.

The authors report Q-switched operation from an electrically-injected monolithic coupled-resonator structure which consists of an active cavity with InGaAs quantum wells optically coupled to a passive cavity. The passive cavity contains a bulk GaAs region which is reverse-biased to provide variable absorption at the lasing wavelength of 990 nm. Cavity coupling is utilized to effect large changes in output intensity with only very small changes in passive cavity absorption. The device is shown to produce pulses as short as 150 ps at repetition rates as high 4 GHz. A rate equation approach is used to model the Q-switched operation yielding good agreement between the experimental and theoretical pulse shape. Small-signal frequency response measurements also show a transition from a slower ({approximately} 300 MHZ) forward-biased modulation regime to a faster ({approximately} 2 GHz) modulation regime under reverse-bias operation.

More Details
Results 326–350 of 363
Results 326–350 of 363