Publications

Results 26–50 of 184

Search results

Jump to search filters

Fast and Robust Linear Solvers based on Hierarchical Matrices (LDRD Final Report)

Boman, Erik G.; Darve, Eric; Lehoucq, Richard B.; Rajamanickam, Sivasankaran R.; Tuminaro, Raymond S.; Yamazaki, Ichitaro Y.

This report is the final report for the LDRD project "Fast and Robust Linear Solvers using Hierarchical Matrices". The project was a success. We developed two novel algorithms for solving sparse linear systems. We demonstrated their effectiveness on ill-conditioned linear systems from ice sheet simulations. We showed that in many cases, we can obtain near-linear scaling. We believe this approach has strong potential for difficult linear systems and should be considered for other Sandia and DOE applications. We also report on some related research activities in dense solvers and randomized linear algebra.

More Details

MueLu User's Guide

Berger-Vergiat, Luc B.; Glusa, Christian A.; Hu, Jonathan J.; Siefert, Christopher S.; Tuminaro, Raymond S.; Mayr, Matthias; Prokopenko, Andrey; Wiesner, Tobias

This is the official user guide for MUELU multigrid library in Trilinos version 12.13 (Dev). This guide provides an overview of MUELU, its capabilities, and instructions for new users who want to start using MUELU with a minimum of effort. Detailed information is given on how to drive MUELU through its XML interface. Links to more advanced use cases are given. This guide gives information on how to achieve good parallel performance, as well as how to introduce new algorithms Finally, readers will find a comprehensive listing of available MUELU options. Any options not documented in this manual should be considered strictly experimental.

More Details

High resolution viscous fingering simulation in miscible displacement using a p-adaptive discontinuous Galerkin method with algebraic multigrid preconditioner

Journal of Computational Physics

Becker, G.; Siefert, Christopher S.; Tuminaro, Raymond S.; Sun, H.; Valiveti, D.M.; Mohan, A.; Yin, J.; Huang, H.

High resolution simulation of viscous fingering can offer an accurate and detailed prediction for subsurface engineering processes involving fingering phenomena. The fully implicit discontinuous Galerkin (DG) method has been shown to be an accurate and stable method to model viscous fingering with high Peclet number and mobility ratio. In this paper, we present two techniques to speedup large scale simulations of this kind. The first technique relies on a simple p-adaptive scheme in which high order basis functions are employed only in elements near the finger fronts where the concentration has a sharp change. As a result, the number of degrees of freedom is significantly reduced and the simulation yields almost identical results to the more expensive simulation with uniform high order elements throughout the mesh. The second technique for speedup involves improving the solver efficiency. We present an algebraic multigrid (AMG) preconditioner which allows the DG matrix to leverage the robust AMG preconditioner designed for the continuous Galerkin (CG) finite element method. The resulting preconditioner works effectively for fixed order DG as well as p-adaptive DG problems. With the improvements provided by the p-adaptivity and AMG preconditioning, we can perform high resolution three-dimensional viscous fingering simulations required for miscible displacement with high Peclet number and mobility ratio in greater detail than before for well injection problems.

More Details

MPAS-Albany Land Ice (MALI): A variable-resolution ice sheet model for Earth system modeling using Voronoi grids

Geoscientific Model Development

Hoffman, Matthew J.; Perego, Mauro P.; Price, Stephen F.; Lipscomb, William H.; Zhang, Tong; Jacobsen, Douglas; Kalashnikova, Irina; Salinger, Andrew G.; Tuminaro, Raymond S.; Bertagna, Luca B.

We introduce MPAS-Albany Land Ice (MALI) v6.0, a new variable-resolution land ice model that uses unstructured Voronoi grids on a plane or sphere. MALI is built using the Model for Prediction Across Scales (MPAS) framework for developing variable-resolution Earth system model components and the Albany multi-physics code base for the solution of coupled systems of partial differential equations, which itself makes use of Trilinos solver libraries. MALI includes a three-dimensional first-order momentum balance solver (Blatter-Pattyn) by linking to the Albany-LI ice sheet velocity solver and an explicit shallow ice velocity solver. The evolution of ice geometry and tracers is handled through an explicit first-order horizontal advection scheme with vertical remapping. The evolution of ice temperature is treated using operator splitting of vertical diffusion and horizontal advection and can be configured to use either a temperature or enthalpy formulation. MALI includes a mass-conserving subglacial hydrology model that supports distributed and/or channelized drainage and can optionally be coupled to ice dynamics. Options for calving include eigencalving, which assumes that the calving rate is proportional to extensional strain rates. MALI is evaluated against commonly used exact solutions and community benchmark experiments and shows the expected accuracy. Results for the MISMIP3d benchmark experiments with MALI's Blatter-Pattyn solver fall between published results from Stokes and L1L2 models as expected. We use the model to simulate a semi-realistic Antarctic ice sheet problem following the initMIP protocol and using 2 km resolution in marine ice sheet regions. MALI is the glacier component of the Energy Exascale Earth System Model (E3SM) version 1, and we describe current and planned coupling to other E3SM components.

.

More Details

An algebraic multigrid method for Q2−Q1 mixed discretizations of the Navier–Stokes equations

Numerical Linear Algebra with Applications

Prokopenko, Andrey V.; Tuminaro, Raymond S.

Algebraic multigrid (AMG) preconditioners are considered for discretized systems of partial differential equations (PDEs) where unknowns associated with different physical quantities are not necessarily colocated at mesh points. Specifically, we investigate a Q2−Q1 mixed finite element discretization of the incompressible Navier–Stokes equations where the number of velocity nodes is much greater than the number of pressure nodes. Consequently, some velocity degrees of freedom (DOFs) are defined at spatial locations where there are no corresponding pressure DOFs. Thus, AMG approaches leveraging this colocated structure are not applicable. This paper instead proposes an automatic AMG coarsening that mimics certain pressure/velocity DOF relationships of the Q2−Q1 discretization. The main idea is to first automatically define coarse pressures in a somewhat standard AMG fashion and then to carefully (but automatically) choose coarse velocity unknowns so that the spatial location relationship between pressure and velocity DOFs resembles that on the finest grid. To define coefficients within the intergrid transfers, an energy minimization AMG (EMIN-AMG) is utilized. EMIN-AMG is not tied to specific coarsening schemes and grid transfer sparsity patterns, and so it is applicable to the proposed coarsening. Numerical results highlighting solver performance are given on Stokes and incompressible Navier–Stokes problems.

More Details
Results 26–50 of 184
Results 26–50 of 184