Publications

Results 1–100 of 102

Search results

Jump to search filters

Natural carbonation of portland cement with synthetic zeolite Y as a supplementary cementitious material

Construction and Building Materials

Rimsza, Jessica; Mills, Melissa M.; Walder, Brennan J.; Fritzsching, Keith; Jove-Colon, Carlos F.; Bullard, Jeffrey W.; Lapeyre, Jonathan; Mcenroe, Theresa; Matteo, Edward N.; Tuinukuafe, Atolo A.

Risks associated with carbonation are a key limitation to greater replacement levels of ordinary portland cement (OPC) by supplementary cementitious materials (SCMs). The addition of pozzolanic SCMs in OPC alters the hydrate assemblage by forming phases like calcium-(alumina)-silicate-hydrate (C-(A)-S-H). The objective of the present study was to elucidate how such changes in hydrate assemblage influence the chemical mechanisms of carbonation in a realistic OPC system. Here, we show that synthetic zeolite Y (faujasite) is a highly reactive pozzolan in OPC that reduces the calcium content of hydration products via prompt consumption of calcium hydroxide from the evolving phase assemblage prior to CO2 exposure. Suppression of portlandite at moderate to high zeolite Y content led to a more damaging mechanism of carbonation by disrupting the formation of a passivating carbonate layer. Without this layer, carbonation depth and CO2 uptake are increased. Binders containing 12–18% zeolite Y by volume consumed all the calcium hydroxide from OPC during hydration and reduced the Ca/(Si+Al) ratio of the amorphous products to near 0.67. In these cases, higher carbonation depths were observed after exposure to ambient air with decalcification of C-(A)-S-H as the main source of CO2 buffering. Binders with either 0% or 4% zeolite Y contained calcium hydroxide in the hydrated microstructure, had higher Ca/(Si+Al) ratios, and formed a calcite-rich passivation layer that halted deep carbonation. Although the carbonated layer in the samples with 12% and 18% zeolite Y contained 70% and 76% less calcite than the OPC respectively, their higher carbonation depths resulted in total CO2 uptakes that were 12x greater than the OPC sample. Passivation layer formation in samples with calcium hydroxide explains this finding and was further supported by thermodynamic modeling. High Si/Al zeolite additives to OPC should be balanced with the calcium content for optimal carbonation resistance.

More Details

Summary of the Brine Availability Test in Salt (BATS), Including Extended Plan for Experiments at the Waste Isolation Pilot Plant (WIPP)

Kuhlman, Kristopher L.; Mills, Melissa M.; Choens II, Robert C.; Herrick, Courtney G.; Otto, Shawn; Davis, Jon; Stauffer, Philip H.; Wu, Yuxin

This document lays out a set of near-future investigations in salt, the third phase of BATS (BATS 3). This phase is planned to answer the few remaining issues from the first two phases of BATS (BATS 1 and BATS 2), and to prepare for a subsequent large-scale demonstration phase. The BATS experiments are the first part of a larger plan to conduct field experiments to answer specific technical questions, improve the technical basis for disposal of heat-generating radioactive waste in salt (Stauffer et al., 2015; SNL et al., 2020), and demonstrate readiness for disposal of radioactive waste in salt, including large, hot waste packages.

More Details

Proceedings of the 13th US/German Workshop on Salt Repository Research, Design, and Operation

Mills, Melissa M.; Kuhlman, Kristopher L.; Jayne, Richard; Melzer, Jorg; Popp, Till; Cajuhi, Tuanny; Friedenberg, Larissa; Czaikowski, Oliver; Gupta, Neel

This report summarizes the proceedings of the 13th US/German Workshop on Salt Repository Research, Design, and Operation hosted by Sandia National Laboratories on June 20-23, 2023, in Santa Fe, New Mexico, USA. Over 60 participants attended, representing Germany, United States, the Netherlands, Australia, and the United Kingdom, along with the IAEA. The purpose of the US/German Workshop is to foster in-person collaboration and dialogue amongst salt repository researchers and nuclear waste disposal implementers across international organizations. The workshop included five sessions of topical presentations and two breakout sessions to promote additional discussion on compelling topics.

More Details

KOMPASS-II: Compaction of Crushed salt for Safe Containment – Phase 2

Coulibaly, Jibril B.; Friedenberg, Larissa; Bartol, Jeroen; Foulk, James W.; Beese, Steffen; Czaikowski, Oliver; De Bresser, Hans; Dusterloh, Uwe; Eickemeier, Ralf; Gartzke, Anne; Hangx, Suzanne; Jantschik, Kyra; Laurich, Ben; Lerch, Christian; Lerche, Svetlana; Ludeling, Christoph; Mills, Melissa M.; Muller-Hoeppe, Nina; Popp, Till; Rabbel, Ole; Rahmig, Michael; Reedlunn, Benjamin; Rogalski, Abram; Rolke, Christopher; Saruulbayar, Nachinzorig; Spiers, Christopher J.; Svensson, Kristoff; Thiedau, Jan; Van Oosterhout, Bart; Zemke, Kornelia

Long-term stable sealing elements are a basic component in the safety concept for a possible repository for heat-emitting radioactive waste in rock salt. The sealing elements will be part of the closure concept for drifts and shafts. They will be made from a welldefinied crushed salt in employ a specific manufacturing process. The use of crushed salt as geotechnical barrier as required by the German Site Selection Act from 2017 /STA 17/ represents a paradigm change in the safety function of crushed salt, since this material was formerly only considered as stabilizing backfill for the host rock. The demonstration of the long-term stability and impermeability of crushed salt is crucial for its use as a geotechnical barrier. The KOMPASS-II project, is a follow-up of the KOMPASS-I project and continues the work with focus on improving the understanding of the thermal-hydraulic-mechanical (THM) coupled processes in crushed salt compaction with the objective to enhance the scientific competence for using crushed salt for the long-term isolation of high-level nuclear waste within rock salt repositories. The project strives for an adequate characterization of the compaction process and the essential influencing parameters, as well as a robust and reliable long-term prognosis using validated constitutive models. For this purpose, experimental studies on long-term compaction tests are combined with microstructural investigations and numerical modeling. The long-term compaction tests in this project focused on the effect of mean stress, deviatoric stress and temperature on the compaction behavior of crushed salt. A laboratory benchmark was performed identifying a variability in compaction behavior. Microstructural investigations were executed with the objective to characterize the influence of pre-compaction procedure, humidity content and grain size/grain size distribution on the overall compaction process of crushed salt with respect to the deformation mechanisms. The created database was used for benchmark calculations aiming for improvement and optimization of a large number of constitutive models available for crushed salt. The models were calibrated, and the improvement process was made visible applying the virtual demonstrator.

More Details

Self-assembled Seashell Like Coatings for Large Area Robust Debris Shields for Next Generation Pulsed Power Drivers

Xu, Guangping; Fan, Hongyou; Mccoy, Chad A.; Schwarz, Jens; Mills, Melissa M.; Boro, Joseph; Ho, Tuan A.; Rosenthal, Justin; Davis, Haley; Xiong, Jenny; Yoon, Alyssa

During this LDRD project, our team developed a technology which enables the fabrication of novel nanostructures replicating seashell – “nature’s toughest material”. The resulting coatings exhibit high thermal stability up to 1650°C, which exceeds the hardness of Spectra® by ~44%, as well as the compressive strength of aluminum by ~57%. Coatings made with this technology are stronger, environmentally friendly, more sustainable, and more versatile than other comparable materials. Beryllium wafers, the current, most favorable shielding material in terms of thermal and mechanical properties, are very toxic and cost hundreds of times more than the new material developed in this project. The coatings on silicon wafer and stainless steel, respectively, have been tested as ride-along on the Z machine and clearly outperform the bare substrate. Use of this technology will have a profound global impact for pulsed power and fusion energy development, debris mitigation for spacecraft and satellites, durability of drill bits used in deep well drilling and tunnel boring operations, thermal protection of aircraft and manned spacecraft, and various other thermal and mechanical protection applications.

More Details

Brine Availability Test in Salt (BATS) FY23 Update

Kuhlman, Kristopher L.; Mills, Melissa M.; Jayne, Richard; Matteo, Edward N.; Herrick, Courtney G.; Nemer, Martin; Xiong, Yongliang; Choens II, Robert C.; Paul, Matthew J.; Downs, Christine; Stauffer, Philip; Boukhalfa, Hakim; Guiltinan, Eric; Rahn, Thom; Otto, Shawn; Davis, Jon; Eldridge, Daniel; Stansberry, Aidan; Rutqvist, Johnny; Wu, Yuxin; Tounsi, Hafssa; Hu, Mengsu; Uhlemann, Sebastian; Wang, Jiannan

This report summarizes the fiscal year 2023 (FY23) status of the second phase of a series of borehole heater tests in salt at the Waste Isolation Pilot Plant (WIPP) funded by the Disposal Research and Development (R&D) program of the Spent Fuel & Waste Science and Technology (SFWST) office at the US Department of Energy’s Office of Nuclear Energy’s (DOE-NE) Office in the Spent Fuel and Waste Disposition (SFWD) program.

More Details

Salt International Collaborations FY23 Update

Kuhlman, Kristopher L.; Matteo, Edward N.; Mills, Melissa M.; Jayne, Richard; Coulibaly, Jibril B.; Reedlunn, Benjamin; Foulk, James W.

This report summarizes the international collaborations conducted by Sandia funded by the US Department of Energy Office (DOE) of Nuclear Energy (DOE-NE) Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D and Salt International work packages. This report satisfies the level-three milestone M3SF-23SN010303062. Several stand-alone sections make up this summary report, each completed by the participants. The sections discuss granular salt reconsolidation (KOMPASS), engineered barriers (RANGERS), numerical model comparison (DECOVALEX) and an NEA Salt Club working group on the development of scenarios as part of the performance assessment development process. Finally, we summarize events related to the US/German Workshop on Repository Research, Design and Operations.

More Details

Compaction of crushed salt for the safe containment – Overview of Phase 2 of the KOMPASS project

Friedenberg, Larissa; Czaikowski, Oliver; Lerch, Christian; Muller Hoeppe, Nina; Rahmig, Michael; Bartol, Jeroen; Dusterloh, Uwe; Lerche, Svetlana; Saruulbayar, Nachinzorig; Lippmann-Pipke, Johanna; Laurich, Ben; Svensson, Kristoff; Zemke, Kornelia; Thiedau, Jan; Liu, Wenting; Gartzke, Anne; Popp, Till; Ludeling, Christoph; Rolke, C.; Rabbel, Ole; Reedlunn, Benjamin; Foulk, James W.; Mills, Melissa M.; Coulibaly, Jibril B.; Spiers, Chris; De Bresser, Hans; Hangx, Suzanne; Van Oosterhout, Bart

Abstract not provided.

Control of the Structural Charge Distribution and Hydration State upon Intercalation of CO2 into Expansive Clay Interlayers

Journal of Physical Chemistry Letters

Ho, Tuan A.; Wang, Yifeng; Rempe, Susan; Dasgupta, Nabankur; Xu, Guangping; Zwier, Timothy S.; Mills, Melissa M.

Numerous experimental investigations indicated that expansive clays such as montmorillonite can intercalate CO2 preferentially into their interlayers and therefore potentially act as a material for CO2 separation, capture, and storage. However, an understanding of the energy-structure relationship during the intercalation of CO2 into clay interlayers remains elusive. Here, we use metadynamics molecular dynamics simulations to elucidate the energy landscape associated with CO2 intercalation. Our free energy calculations indicate that CO2 favorably partitions into nanoconfined water in clay interlayers from a gas phase, leading to an increase in the CO2/H2O ratio in clay interlayers as compared to that in bulk water. CO2 molecules prefer to be located at the centers of charge-neutral hydrophobic siloxane rings, whereas interlayer spaces close to structural charges tend to avoid CO2 intercalation. The structural charge distribution significantly affects the amount of CO2 intercalated in the interlayers. These results provide a mechanistic understanding of CO2 intercalation in clays for CO2 separation, capture, and storage.

More Details

Salt International Collaborations (FY22 Update)

Kuhlman, Kristopher L.; Matteo, Edward N.; Mills, Melissa M.; Jayne, Richard; Reedlunn, Benjamin; Sobolik, Steven; Foulk, James W.

This report summarizes the international collaborations conducted by Sandia funded by the US Department of Energy Office (DOE) of Nuclear Energy Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D and Salt International work packages. This report satisfies the level-three milestone M3SF-22SN010303063. Several stand-alone sections make up this summary report, each completed by the participants. The sections discuss international collaborations on geomechanical benchmarking exercises (WEIMOS), granular salt reconsolidation (KOMPASS), engineered barriers (RANGERS), numerical model comparison (DECOVALEX) and an NEA Salt Club working group on the development of scenarios as part of the performance assessment development process. Finally, we summarize events related to the US/German Workshop on Repository Research, Design and Operations. The work summarized in this annual update has occurred during the COVID-19 pandemic, and little international or domestic travel has occurred. Most of the collaborations have been conducted via email or as virtual meetings, but a slow return to travel and in-person meetings has begun.

More Details

FY22 Progress on Multicontinuum Methods in Containment

Kuhlman, Kristopher L.; Mills, Melissa M.; Heath, Jason E.; Paul, Matthew J.

Estimation of two-phase fluid flow properties is important to understand and predict water and gas movement through the vadose zone for agricultural, hydrogeological, and engineering applications, such as containment transport and/or containment of gases in the subsurface. To estimate rock fluid flow properties and subsequently predict physically realistic processes such as patterns and timing of water, gas, and energy (e.g., heat) movement in the subsurface, laboratory spontaneous water imbibition with simultaneous temperature measurement and numerical modeling methods are presented in the FY22 progress report. A multiple-overlapping-continua conceptual model is used to explain and predict observed complex multi-phenomenological laboratory test behavior during spontaneous imbibition experiments. This report primarily addresses two complexities that arise during the experiments: 1) capturing the late-time behavior of spontaneous imbibition tests with dual porosity; and 2) understanding the thermal perturbation observed at or ahead of the imbibing wetting front, which are associated with adsorption of water in initially dry samples. We use numerical approaches to explore some of these issues, but also lay out a plan for further laboratory experimentation and modeling to best understand and leverage these unique observations.

More Details

Bioinspired synthesis of thermally stable and mechanically strong nanocomposite coatings

MRS Advances

Xu, Guangping; Fan, Hongyou; Mccoy, Chad A.; Mills, Melissa M.; Schwarz, Jens

Abstract: An innovative biomimetic method has been developed to synthesize layered nanocomposite coatings using silica and sugar-derived carbon to mimic the formation of a natural seashell structure. The layered nanocomposites are fabricated through alternate coatings of condensed silica and sugar. Sugar-derived carbon is a cost-effective material as well as environmentally friendly. Pyrolysis of sugar will form polycyclic aromatic carbon sheets, i.e., carbon black. The resulting final nanocomposite coatings can survive temperatures of more than 1150 °C and potentially up to 1650 °C. These coatings have strong mechanical properties, with hardness of more than 11 GPa and elastic modulus of 120 GPa, which are 80% greater than those of pure silica. The layered coatings have many applications, such as shielding in the form of mechanical barriers, body armor, and space debris shields. Graphical abstract: [Figure not available: see fulltext.]

More Details

Parameter estimation from spontaneous imbibition into volcanic tuff

Vadose Zone Journal

Kuhlman, Kristopher L.; Mills, Melissa M.; Heath, Jason E.; Paul, Matthew J.; Wilson, Jennifer E.; Bower, John E.

Two-phase fluid flow properties underlie quantitative prediction of water and gas movement, but constraining these properties typically requires multiple time-consuming laboratory methods. The estimation of two-phase flow properties (van Genuchten parameters, porosity, and intrinsic permeability) is illustrated in cores of vitric nonwelded volcanic tuff using Bayesian parameter estimation that fits numerical models to observations from spontaneous imbibition experiments. The uniqueness and correlation of the estimated parameters is explored using different modeling assumptions and subsets of the observed data. The resulting estimation process is sensitive to both moisture retention and relative permeability functions, thereby offering a comprehensive method for constraining both functions. The data collected during this relatively simple laboratory experiment, used in conjunction with a numerical model and a global optimizer, result in a viable approach for augmenting more traditional capillary pressure data obtained from hanging water column, membrane plate extractor, or mercury intrusion methods. This method may be useful when imbibition rather than drainage parameters are sought, when larger samples (e.g., including heterogeneity or fractures) need to be tested that cannot be accommodated in more traditional methods, or when in educational laboratory settings.

More Details

Permeability changes of damaged rock salt adjacent to inclusions of different stiffness

56th U.S. Rock Mechanics/Geomechanics Symposium

Anwar, Ishtiaque; Stormont, John C.; Mills, Melissa M.; Matteo, Edward N.

Rock salt is being considered as a medium for energy storage and radioactive waste disposal. A Disturbed Rock Zone (DRZ) develops in the immediate vicinity of excavations in rock salt, with an increase in permeability, which alters the migration of gases and liquids around the excavation. When creep occurs adjacent to a stiff inclusion such as a concrete plug, it is expected that the stress state near the inclusion will become more hydrostatic and less deviatoric, promoting healing (permeability reduction) of the DRZ. In this scoping study, we measured the permeability of DRZ rock salt with time adjacent to inclusions (plugs) of varying stiffness to determine how the healing of rock salt, as reflected in the permeability changes, is a function of the stress and time. Samples were created with three different inclusion materials in a central hole along the axis of a salt core: (i) very soft silicone sealant, (ii) sorel cement, and (iii) carbon steel. The measured permeabilities are corrected for the gas slippage effect. We observed that the permeability change is a function of the inclusion material. The stiffer the inclusion, the more rapidly the permeability reduces with time.

More Details

RANGERS: State of the Art and Science on Engineered Barrier Systems in Salt Formations

Simo, Eric K.; Herold, Philipp; Keller, Andreas; Lommerzheim, Andree; Matteo, Edward N.; Hadgu, Teklu; Jayne, Richard; Kuhlman, Kristopher L.; Mills, Melissa M.

The construction of deep geological repositories (DGR) in salt formations requires penetrating through naturally sealing geosphere layers. While the emplaced nuclear waste is primarily protected by the containment-providing rock zone (CRZ), technical barriers are required, for example during handling. For closure geotechnical barriers seal the repository along the accesses against water or solutions from outside and the possible emission paths for radionuclides contained inside. As these barriers must ensure maintenance-free function on a long-term basis, they typically comprise a set of specialized elements with diversified functions that may be used redundantly. The effects of the individual elements are coordinated so that they are collectively referred to as the Engineered Barrier System (EBS).

More Details

GDSA Framework Development and Process Model Integration FY2021

Mariner, Paul; Berg, Timothy M.; Debusschere, Bert; Eckert, Aubrey; Harvey, Jacob A.; Laforce, Tara C.; Leone, Rosemary C.; Mills, Melissa M.; Nole, Michael A.; Park, Heeho D.; Perry, F.V.; Seidl, D.T.; Swiler, Laura P.; Chang, Kyung W.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Spent Fuel & Waste Disposition (SFWD) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and highlevel nuclear waste (HLW). A high priority for SFWST disposal R&D is disposal system modeling (DOE 2012, Table 6; Sevougian et al. 2019). The SFWST Geologic Disposal Safety Assessment (GDSA) work package is charged with developing a disposal system modeling and analysis capability for evaluating generic disposal system performance for nuclear waste in geologic media.

More Details

Isotopic fractionation as in-situ sensor of subsurface reactive flow and precursor for rock failure

Ilgen, Anastasia G.; Choens II, Robert C.; Knight, A.W.; Harvey, Jacob A.; Martinez, Mario J.; Yoon, Hongkyu; Wilson, Jennifer E.; Mills, Melissa M.; Wang, Qiaoyi; Gruenwald, Michael; Newell, Pania; Schuler, Louis; And Davis, Haley J.

Greater utilization of subsurface reservoirs perturbs in-situ chemical-mechanical conditions with wide ranging consequences from decreased performance to project failure. Understanding the chemical precursors to rock deformation is critical to reducing the risks of these activities. To address this need, we investigated the coupled flow-dissolution- precipitation-adsorption reactions involving calcite and environmentally-relevant solid phases. Experimentally, we quantified (1) stable isotope fractionation processes for strontium during calcite nucleation and growth, and during reactive fluid flow; (2) consolidation behavior of calcite assemblages in the common brines. Numerically, we quantified water weakening of calcite using molecular dynamics simulations; and quantified the impact of calcite dissolution rate on macroscopic fracturing using finite element models. With microfluidic experiments and modeling, we show the effect of local flow fields on the dissolution kinetics of calcite. Taken together across a wide range of scales and methods, our studies allow us to separate the effects of reaction, flow, and transport, on calcite fracturing and the evolution of strontium isotopic signatures in the reactive fluids.

More Details

Brine Availability Test in Salt (BATS) FY21 Update

Kuhlman, Kristopher L.; Mills, Melissa M.; Jayne, Richard; Matteo, Edward N.; Herrick, Courtney G.; Nemer, Martin; Xiong, Yongliang; Choens II, Robert C.; Paul, Matthew J.; Stauffer, Phil; Boukhalfa, Hakim; Guiltinan, Eric; Rahn, Thom; Weaver, Doug; Otto, Shawn; Davis, Jon; Rutqvist, Jonny; Wu, Yuxin; Hu, Mengsu; Wang, Jiannan

This report summarizes the 2021 fiscal year (FY21) status of ongoing borehole heater tests in salt funded by the disposal research and development (R&D) program of the Office of Spent Fuel & Waste Science and Technology (SFWST) of the US Department of Energy’s Office of Nuclear Energy’s (DOE-NE) Office of Spent Fuel and Waste Disposition (SFWD). This report satisfies SFWST milestone M2SF- 21SN010303052 by summarizing test activities and data collected during FY21. The Brine Availability Test in Salt (BATS) is fielded in a pair of similar arrays of horizontal boreholes in an experimental area at the Waste Isolation Pilot Plant (WIPP). One array is heated, the other unheated. Each array consists of 14 boreholes, including a central borehole with gas circulation to measure water production, a cement seal exposure test, thermocouples to measure temperature, electrodes to infer resistivity, a packer-isolated borehole to add tracers, fiber optics to measure temperature and strain, and piezoelectric transducers to measure acoustic emissions. The key new data collected during FY21 include a series of gas tracer tests (BATS phase 1b), a pair of liquid tracer tests (BATS phase 1c), and data collected under ambient conditions (including a period with limited access due to the ongoing pandemic) since BATS phase 1a in 2020. A comparison of heated and unheated gas tracer test results clearly shows a decrease in permeability of the salt upon heating (i.e., thermal expansion closes fractures, which reduces permeability).

More Details

Evaluation of Nuclear Spent Fuel Disposal in Clay-Bearing Rock - Process Model Development and Experimental Studies (M2SF-21SN010301072)

Jove-Colon, Carlos F.; Ho, Tuan A.; Coker, Eric N.; Lopez, Carlos M.; Kuhlman, Kristopher L.; Sanchez, Amanda; Mills, Melissa M.; Kruichak-Duhigg, Jessica N.; Matteo, Edward N.; Rutqvist, Jonny; Guglielmi, Yves; Sasaki, Tsubasa; Deng, Hang; Li, Pei; Steefel, Carl I.; Tournassat, Christophe; Xu, Hao; Babhulgaonkar, Shaswat; Birkholzer, Jens; Sauer, Kirsten B.; Caporuscio, Florie A.; Rock, Marlena J.; Zavarin, Mavrik; Wolery, Thomas J.; Chang, Elliot; Wainwright, Haruko

The DOE R&D program under the Spent Fuel Waste Science Technology (SFWST) campaign has made key progress in modeling and experimental approaches towards the characterization of chemical and physical phenomena that could impact the long-term safety assessment of heatgenerating nuclear waste disposition in deep-seated clay/shale/argillaceous rock. International collaboration activities such as heater tests, continuous field data monitoring, and postmortem analysis of samples recovered from these have elucidated key information regarding changes in the engineered barrier system (EBS) material exposed to years of thermal loads. Chemical and structural analyses of sampled bentonite material from such tests as well as experiments conducted on these are key to the characterization of thermal effects affecting bentonite clay barrier performance and the extent of sacrificial zones in the EBS during the thermal period. Thermal, hydrologic, and chemical data collected from heater tests and laboratory experiments has been used in the development, validation, and calibration of THMC simulators to model near-field coupled processes. This information leads to the development of simulation approaches (e.g., continuum and discrete) to tackle issues related to flow and transport at various scales of the host-rock, its interactions with barrier materials, and EBS design concept.

More Details

Spontaneous Imbibition Tests and Parameter Estimation in Volcanic Tuff

Kuhlman, Kristopher L.; Mills, Melissa M.; Heath, Jason E.; Paul, Matthew J.; Wilson, Jennifer E.; Bower, John E.

We present a dynamic laboratory spontaneous imbibition test and interpretation method, demonstrated on volcanic tuff samples from the Nevada National Security Site. The method includes numerical inverse modeling to quantify uncertainty of estimated two-phase fluid flow properties. As opposed to other approaches requiring multiple different laboratory instruments, the dynamic imbibition method simultaneously estimates capillary pressure and relative permeability from one test apparatus.

More Details

Salt International Collaborations FY2021 Update

Kuhlman, Kristopher L.; Matteo, Edward N.; Mills, Melissa M.; Jayne, Richard; Reedlunn, Benjamin; Sobolik, Steven; Foulk, James W.; Stein, Emily; Gross, Mike

This report summarizes the international collaboration work conducted by Sandia and funded by the US Department of Energy Office (DOE) of Nuclear Energy Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D and Salt International work packages. This report satisfies the level-three milestone M3SF-20SN010303062. Several stand-alone sections make up this summary report, each completed by the participants. The sections discuss international collaborations on geomechanical benchmarking exercises (WEIMOS), granular salt reconsolidation (KOMPASS), engineered barriers (RANGERS), and model comparison (DECOVALEX). Lastly, the report summarizes a newly developed working group on the development of scenarios as part of the performance assessment development process, and the activities related to the Nuclear Energy Agency (NEA) Salt club and the US/German Workshop on Repository Research, Design and Operations.

More Details

International Collaborations Activities on Disposal in Argillite R&D: Characterization Studies and Modeling Investigations

Jove-Colon, Carlos F.; Ho, Tuan A.; Coker, Eric N.; Lopez, Carlos M.; Kuhlman, Kristopher L.; Sanchez, Amanda; Mills, Melissa M.; Kruichak-Duhigg, Jessica N.; Matteo, Edward N.

This interim report is an update of ongoing experimental and modeling work on bentonite material described in Jové Colón et al. (2019, 2020) from past international collaboration activities. As noted in Jové Colón et al. (2020), work on international repository science activities such as FEBEX-DP and DECOVALEX19 is either no longer continuing by the international partners. Nevertheless, research activities on the collected sample materials and field data are still ongoing. Descriptions of these underground research laboratory (URL) R&D activities are described elsewhere (Birkholzer et al. 2019; Jové Colón et al. 2020) but will be explained here when needed. The current reports recent reactive-transport modeling on the leaching of sedimentary rock.

More Details

First-Round Testing of the Brine Availability Test in Salt (BATS) at the Waste Isolation Pilot Plant (WIPP)

Kuhlman, Kristopher L.; Mills, Melissa M.; Jayne, Richard; Herrick, Courtney G.; Choens II, Robert C.; Nemer, Martin; Heath, Jason E.; Matteo, Edward N.; Xiong, Yongliang; Otto, Shawn; Dozier, Brian; Weaver, Doug; Stauffer, Phil; Guiltinan, Eric; Boukhalfa, Hakim; Rahn, Thom; Wu, Yuxin; Rutqvist, Jonny; Hu, Mengsu; Crandall, Dustin

Abstract not provided.

Advances in GDSA Framework Development and Process Model Integration

Mariner, Paul; Nole, Michael A.; Basurto, Eduardo; Berg, Timothy M.; Chang, Kyung W.; Debusschere, Bert; Eckert, Aubrey; Ebeida, Mohamed; Gross, Mike; Hammond, Glenn; Harvey, Jacob A.; Jordan, Spencer H.; Kuhlman, Kristopher L.; Laforce, Tara C.; Leone, Rosemary C.; Mclendon, William; Mills, Melissa M.; Park, Heeho D.; Foulk, James W.; Foulk, James W.; Seidl, D.T.; David, Sevougian; Stein, Emily; Swiler, Laura P.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Spent Fuel & Waste Disposition (SFWD) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and highlevel nuclear waste (HLW). A high priority for SFWST disposal R&D is to develop a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media. This report describes fiscal year (FY) 2020 advances of the Geologic Disposal Safety Assessment (GDSA) Framework and PFLOTRAN development groups of the SFWST Campaign. The common mission of these groups is to develop a geologic disposal system modeling capability for nuclear waste that can be used to probabilistically assess the performance of disposal options and generic sites. The capability is a framework called GDSA Framework that employs high-performance computing (HPC) capable codes PFLOTRAN and Dakota.

More Details

KOMPASS: Compaction of crushed salt for the safe containment

Czaikowski, Oliver; Friedenberg, Larissa; Mueller-Hoeppe, Nina; Lerch, Christian; Eickemeier, Ralf; Laurich, Ben; Liu, Wenting; Zemke, Kornelia; Luedeling, Christoph; Popp, Till; Foulk, James W.; Mills, Melissa M.; Reedlunn, Benjamin; Duesterloh, Uwe; Lerche, Svetlana; Zhao, Juan

In Germany, rock salt formations are a possible host rock taken into account for the safe disposal of heat-emitting radioactive waste. With respect to crushed salt will be used in the repository for backfilling of open cavitied (using dry material). With time, the crushed salt will be compacted by the convergence of the host rock and reaches porosities comparable with the rock salts. The compaction behaviour of crushed salt has been investigated within the last 40 years, however, its behaviour at low porosities and the resulting low permeabilities becomes relevant with the introduction of the approach of the containment providing rock zone. In the current state, the database and process understanding have some important gaps in knowledge referring the material behaviour, existing laboratory and numerical models, especially for the porosity range. The objective of this project was the development of methods and strategies for the reduction of deficits in the prediction of crushed salt compaction leading to an improvement of the prognosis quality. It includes the development of experimental methods for determining crushed salt properties in the range of low porosities, the enhancement of process understanding and the investigation and development of existing numerical models.

More Details

Characterization and Sampling of Ultralow Permeability Geomaterials using Electrokinetics (LDRD Final Report 209234)

Kuhlman, Kristopher L.; Mills, Melissa M.; Priya, Pikee; Aluru, Narayana

This final report on Laboratory Directed Research and Development (LDRD) project 209234 presents background material for electrokinetics at the pore and porous media scales. We present some theoretical developments related to uncoupling electrokinetic flow solutions, from a manuscript recently accepted into Mathematical Geosciences for publication. We present a summary of two pore-scale modeling efforts undertaken as part of the academic alliance with University of Illinois, resulting in one already submitted journal publication to Transport in Porous Media and another in preparation for submission to a journal. We finally show the laboratory apparatus built in Laboratory B59 in Building 823 and discuss some of the issues that occurred with it.

More Details

FY20 Update on Brine Availability Test in Salt. Revision 4

Kuhlman, Kristopher L.; Mills, Melissa M.; Jayne, Richard; Matteo, Edward N.; Herrick, Courtney G.; Nemer, Martin; Heath, Jason E.; Xiong, Yongliang; Choens II, Robert C.; Stauffer, Phil; Boukhalfa, Hakim; Guiltinan, Eric; Rahn, Thom; Weaver, Doug; Dozier, Brian; Otto, Shawn; Rutqvist, Jonny; Wu, Yuxin; Hu, Mengsu; Uhlemann, Sebastian; Wang, Jiannan

This report summarizes the 2020 fiscal year (FY20) status of the borehole heater test in salt funded by the US Department of Energy Office of Nuclear Energy (DOE-NE) Spent Fuel and Waste Science & Technology (SFWST) campaign. This report satisfies SFWST level-two milestone number M2SF-20SNO10303032. This report is an update of an August 2019 level-three milestone report to present the final as-built description of the test and the first phase of operational data (BATS la, January to March 2020) from the Brine Availability Test in Salt (BATS) field test.

More Details

International Collaborations on Radioactive Waste Disposal in Salt (FY20)

Kuhlman, Kristopher L.; Matteo, Edward N.; Mills, Melissa M.; Jayne, Richard; Reedlunn, Benjamin; Sobolik, Steven; Foulk, James W.; Stein, Emily; Gross, Mike

This report is a summary of the international collaboration work conducted by Sandia and funded by the US Department of Energy Office (DOE) of Nuclear Energy Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D and Salt International work packages. This report satisfies milestone level-three milestone M3SF-205N010303062. Several stand-alone sections make up this summary report, each completed by the participants. The first two sections discuss international collaborations on geomechanical benchmarking exercises (WEIMOS), granular salt reconsolidation (KOMPASS), engineered barriers (RANGERS), and documentation of Features, Events, and Processes (FEPs).

More Details

International Collaborations Activities on Disposal in Argillite R&D: Bentonite Barrier Characterization Studies and Modeling Investigations

Jove-Colon, Carlos F.; Ho, Tuan A.; Coker, Eric N.; Lopez, Carlos M.; Kruichak-Duhigg, Jessica N.; Mills, Melissa M.; Sanchez, Amanda; Hadgu, Teklu

This interim report is an update of the report Jove Colon et al. (2019; M4SF-19SN010301091) describing international collaboration activities pertaining to FEBEX-DP and DECOVALEX19 Task C projects. Although work on these two international repository science activities is no longer continuing by the international partners, investigations on the collected data and samples is still ongoing. Descriptions of these underground research laboratory (URL) R&D activities are given in Jové Colón et al. (2018; 2019) but will repeated here for completeness. The 2019 status of work conducted at Sandia National Laboratories (SNL) on these two activities is summarized along with other international collaboration activities in Birkholzer et al. (2019).

More Details

Validation and Recalibration of the Solubility Models in Support of the Heater Test in Salt Formations

MRS Advances

Xiong, Yongliang; Kuhlman, Kristopher L.; Mills, Melissa M.; Wang, Yifeng

The US Department of Energy Office of Nuclear Energy is conducting a brine availability heater test to characterize the thermal, mechanical, hydrological and chemical response of salt at elevated temperatures. In the heater test, brines will be collected and analyzed for chemical compositions. In order to support the geochemical modeling of chemical evolutions of the brines during the heater test, we are recalibrating and validating the solubility models for the mineral constituents in salt formations up to 100°C, based on the solubility data in multiple component systems as well as simple systems from literature. In this work, we systematically compare the model-predicted values based on the various solubility models related to the constituents of salt formations, with the experimental data. As halite is the dominant constituent in salt formations, we first test the halite solubility model in the Na-Mg-Cl dominated brines. We find the existing halite solubility model systematically over-predict the solubility of halite. We recalibrate the halite model, which can reproduce halite solubilities in Na-Mg-Cl dominated brines well. As gypsum/anhydrite in salt formations controls the sulfate concentrations in associated brines, we test the gypsum solubility model in NaCl solutions up to 5.87 mol•kg-1 from 25°C to 50°C. The testing shows that the current gypsum solubility model reproduces the experimental data well when NaCl concentrations are less than 1 mol•kg-1. However, at NaCl concentrations higher than 1, the model systematically overpredicts the solubility of gypsum. In the Na - Cl - SO4 - CO3 system, the validation tests up to 100°C demonstrate that the model excellently reproduces the experimental data for the solution compositions equilibrated with one single phase such as halite (NaCl) or thenardite (Na2SO4), with deviations equal to, or less than, 1.5 %. The model is much less ideal in reproducing the compositions in equilibrium with the assemblages of halite + thenardite, and of halite + thermonatrite (Na2CO3•H2O), with deviations up to 31 %. The high deviations from the experimental data for the multiple assemblages in this system at elevated temperatures may be attributed to the facts that the database has the Pitzer interaction parameters for Cl - CO3 and SO4 - CO3 only at 25°C. In the Na - Ca - SO4 - HCO3 system, the validation tests also demonstrate that the model reproduces the equilibrium compositions for one single phase such as gypsum better than the assemblages of more than one phase.

More Details

Salt Heater Test (FY19), Rev. 2

Mills, Melissa M.; Kuhlman, Kristopher L.; Matteo, Edward N.; Herrick, Courtney G.; Nemer, Martin; Heath, Jason E.; Xiong, Yongliang; Lopez, Carlos M.; Stauffer, Philip; Boukhalfa, Hakim; Guiltinan, Eric; Rahn, Thom; Weaver, Doug; Dozier, Brian; Otto, Shawn; Rutqvist, Jonny; Wu, Yuxin; Hu, Mengsu; Crandall, Dustin

This report summarizes the 2019 fiscal year (FY19) status of the borehole heater test in salt funded by the US Department of Energy Office of Nuclear Energy (DOE-NE) Spent Fuel and Waste Science & Technology (SFWST) campaign. This report satisfies SFWST level-three milestone report M3SF-19SN010303033. This report is an update of the April 2019 level-two milestone report M2SF-19SNO10303031 to reflect the nearly complete as-built status of the borehole heater test. This report discusses the fiscal year 2019 (FY19) design, implementation, and preliminary data interpretation plan for a set of borehole heater tests call the brine availability tests in salt (BATS), which is funded by the DOE Office of Nuclear Energy (DOE-NE) at the Waste Isolation Pilot Plant (WIPP), a DOE Office of Environmental Management (DOE-EM) site. The organization of BATS is outlined in Project Plan: Salt In-Situ Heater Test (SNL, 2018). An early design of the field test is laid out in Kuhlman et al. (2017), including extensive references to previous field tests, which illustrates aspects of the present test. The previous test plan by Stauffer et al. (2015) places BATS in the context of a multi-year testing strategy, which involves tests of multiple scales and processes, eventually culminating in a drift-scale disposal demonstration. This level-3 milestone report is an update of a level-2 milestone report from April 2019 by the same name. The update adds as-built details of the heater test, which at the time of writing (August 2019) is near complete implementation.

More Details

International Collaborations on Radioactive Waste Disposal in Salt

Kuhlman, Kristopher L.; Matteo, Edward N.; Reedlunn, Benjamin; Mills, Melissa M.; Sobolik, Steven; Gross, Mike; Simo, Eric

This report is a summary of the international collaboration and laboratory work funded by the US Department of Energy Office (DOE) of Nuclear Energy Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D work package. This report satisfies milestone level-four milestone M4SF-19SNO10303064. Several stand-alone sections make up this summary report, each completed by the participants. The first two sections discuss international collaborations on geomechanical benchmarking exercises (WEIMOS), granular salt reconsolidation (KOMPASS), engineered barriers (RANGERS), and documentation of Features, Events, and Processes (FEPs).

More Details

Salt Heater Test (FY19)

Mills, Melissa M.; Kuhlman, Kristopher L.; Matteo, Edward N.; Herrick, Courtney G.; Nemer, Martin; Heath, Jason E.; Xiong, Yongliang; Paul, Matthew J.; Stauffer, Philip; Boukhalfa, Hakim; Guiltinan, Eric; Rahn, Thom; Weaver, Doug; Dozier, Brian; Otto, Shawn; Rutqvist, Jonny; Wu, Yuxin; Ajo-Franklin, Jonathan; Hu, Mengsu

This report discusses the fiscal year 2019 (FY19) design, implementation, and preliminary data interpretation plan for a set of borehole heater tests call the brine availability tests in salt (BATS), which is funded by the DOE Office of Nuclear Energy (DOE-NE) at the Waste Isolation Pilot Plant (WIPP). The organization of BATS is outlined in Project Plan: Salt In-Situ Heater Test. An early design of the field test is laid out in Kuhlman et al., including extensive references to previous field tests, which illustrates aspects of the present test. The previous test plan by Stauffer et al., places BATS in the context of a multi-year testing strategy, which involves tests of multiple scales and processes, possibly culminating in a drift-scale disposal demonstration.

More Details

Evaluation of Spent Nuclear Fuel Disposition in Salt (FY18)

Kuhlman, Kristopher L.; Lopez, Carlos M.; Mills, Melissa M.; Rimsza, Jessica; Sassani, David C.

This report summarizes the 2018 fiscal year (FY18) field, laboratory, and modeling work funded by the US Department of Energy Office of Nuclear Energy (DOE-NE) Spent Fuel and Waste Science & Technology (SFWST) campaign as part of the Sandia National Laboratories Salt Research and Development (R&D) and Salt International work packages. This report satisfies level-two milestone M2SF-18SNO10303031and comprises three related but stand-alone sections. The first section summarizes the programmatic progress made to date in the DOE-NE salt program and its goals going forward. The second section presents brine composition modeling and laboratory activities related to salt evaporation experiments, which will be used to interpret data collected during the heater test. The third section presents theoretical and numerical modeling work done to investigate the effects brine composition have on dihedral angle and the permeability of salt.

More Details

Micromechanical processes in consolidated granular salt

Engineering Geology

Mills, Melissa M.; Stormont, John C.; Bauer, Stephen J.

Granular salt is likely to be used as backfill material and a seal system component within geologic salt formations serving as a repository for long-term isolation of nuclear waste. Pressure from closure of the surrounding salt formation will promote consolidation of granular salt, eventually resulting in properties comparable to native salt. Understanding dependence of consolidation processes on stress state, moisture availability, temperature, and time is important for demonstrating sealing functions and long-term repository performance. This study characterizes laboratory-consolidated granular salt by means of microstructural observations. Granular salt material from mining operations was obtained from the bedded Salado Formation hosting the Waste Isolation Pilot Plant and the Avery Island salt dome. Laboratory test conditions included hydrostatic consolidation of jacketed granular salt with varying conditions of confining isochoric stress to 38 MPa, temperature to 250 °C, moisture additions of 1% by weight, time duration, and vented and non-vented states. Resultant porosities ranged between 1% and 22%. Optical and scanning electron microscopic techniques were used to ascertain consolidation mechanisms. From these investigations, samples with 1% added moisture or unvented during consolidation, exhibit clear pressure solution processes with tightly cohered grain boundaries and occluded fluid pores. Samples with only natural moisture content consolidated by a combination of brittle, cataclastic, and crystal plastic deformation. Recrystallization at 250 °C irrespective of moisture conditions was also observed. The range and variability of conditions applied in this study, combined with the techniques used to display microstructural features, are unique, and provide insight into an important area of governing deformation mechanism(s) occurring within salt repository applications.

More Details

Project Plan: Salt in Situ Heater Test

Kuhlman, Kristopher L.; Mills, Melissa M.; Herrick, Courtney G.; Matteo, Edward N.; Stuaffer, Phil; Johnson, Peter; Boukhalfa, Hakim; Weaver, Doug; Rutqvist, Jonny; Wu, Yuxin

This project plan gives a high-level description of the US Department of Energy Office of Nuclear Energy (DOE-NE) Spent Fuel and Waste Disposition (SFWD) campaign in situ borehole heater test project being planned for the Waste Isolation Pilot Plant (WIPP) site This plan provides an overview of the schedule and responsibilities of the parties involved. This project is a collaborative effort by Sandia, Los Alamos, and Lawrence Berkeley National Laboratories to execute a series of small-diameter borehole heater tests in salt for the DOE-NE SFWD campaign. Design of a heater test in salt at WIPP has evolved over several years. The current design was completed in fiscal year 2017 (FY17), an equipment shakedown experiment is underway in April FY18, and the test implementation will begin in summer of FY18. The project comprises a suite of modular tests, which consist of a group of nearby boreholes in the wall of drifts at WIPP. Each test is centered around a packer-isolated heated borehole (5" diameter) containing equipment for water-vapor collection and brine sampling, surrounded by smaller-diameter (2" diameter) satellite observation boreholes. Observation boreholes will contain temperature sensors, tracer release points, electrical resistivity tomography (ERT) sensors, fiber optic sensing, and acoustic emission (AE) measurements, and sonic velocity sources and sensors. These satellite boreholes will also be used for plugging/sealing tests. The first two tests to be implemented will have the packer-isolated borehole heated to 120°C, with one observation borehole used to monitor changes. Follow-on tests will be designed using information gathered from the first two tests, will be conducted at other temperatures, will use multiple observation boreholes, and may include other measurement types and test designs.

More Details

Model representations of kerogen structures: An insight from density functional theory calculations and spectroscopic measurements

Scientific Reports

Weck, Philippe F.; Kim, Eunja; Wang, Yifeng; Kruichak-Duhigg, Jessica N.; Mills, Melissa M.; Matteo, Edward N.; Coasne, Benoit; Bousige, Colin; Pellenq, Roland J.M.

Molecular structures of kerogen control hydrocarbon production in unconventional reservoirs. Significant progress has been made in developing model representations of various kerogen structures. These models have been widely used for the prediction of gas adsorption and migration in shale matrix. However, using density functional perturbation theory (DFPT) calculations and vibrational spectroscopic measurements, we here show that a large gap may still remain between the existing model representations and actual kerogen structures, therefore calling for new model development. Using DFPT, we calculated Fourier transform infrared (FTIR) spectra for six most widely used kerogen structure models. The computed spectra were then systematically compared to the FTIR absorption spectra collected for kerogen samples isolated from Mancos, Woodford and Marcellus formations representing a wide range of kerogen origin and maturation conditions. Limited agreement between the model predictions and the measurements highlights that the existing kerogen models may still miss some key features in structural representation. A combination of DFPT calculations with spectroscopic measurements may provide a useful diagnostic tool for assessing the adequacy of a proposed structural model as well as for future model development. This approach may eventually help develop comprehensive infrared (IR)-fingerprints for tracing kerogen evolution.

More Details

Status Report on Laboratory Testing and International Collaborations in Salt

Kuhlman, Kristopher L.; Matteo, Edward N.; Hadgu, Teklu; Reedlunn, Benjamin; Sobolik, Steven; Mills, Melissa M.; Kirkes, Leslie; Xiong, Yongliang; Icenhower, Jonathan

This report is a summary of the international collaboration and laboratory work funded by the US Department of Energy Office of Nuclear Energy Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D work package. This report satisfies milestone levelfour milestone M4SF-17SN010303014. Several stand-alone sections make up this summary report, each completed by the participants. The first two sections discuss international collaborations on geomechanical benchmarking exercises (WEIMOS) and bedded salt investigations (KOSINA), while the last three sections discuss laboratory work conducted on brucite solubility in brine, dissolution of borosilicate glass into brine, and partitioning of fission products into salt phases.

More Details

Consensus on Intermediate Scale Salt Field Test Design

Kuhlman, Kristopher L.; Mills, Melissa M.; Matteo, Edward N.

This report summarizes the first stage in a collaborative effort by Sandia, Los Alamos, and Lawrence Berkeley National Laboratories to design a small-diameter borehole heater test in salt at the Waste Isolation Pilot Plant (WIPP) for the US Department of Energy Office of Nuclear Energy (DOE-NE). The intention is to complete test design during the remainder of fiscal year 2017 (FY17), and the implementation of the test will begin in FY18. This document is the result of regular meetings between the three national labs and the DOE-NE, and is intended to represent a consensus of these meetings and discussions.

More Details
Results 1–100 of 102
Results 1–100 of 102