Publications

53 Results

Search results

Jump to search filters

Material properties of ceramic slurries for applications in additive manufacturing using stereolithography

Solid Freeform Fabrication 2018: Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2018

Maines, Erin; Bell, Nelson S.; Evans, Lindsey; Roach, Matthew; Tsui, Lok-Kun; Lavin, Judith M.; Keicher, David

Stereolithography (SL) is a process that uses photosensitive polymer solutions to create 3D parts in a layer by layer approach. Sandia National Labs is interested in using SL for the printing of ceramic loaded resins, namely alumina, that we are formulating here at the labs. One of the most important aspects for SL printing of ceramics is the properties of the slurry itself. The work presented here will focus on the use of a novel commercially available low viscosity resin provided by Colorado Photopolymer Solutions, CPS 2030, and a Hypermer KD1 dispersant from Croda. Two types of a commercially available alumina powder, Almatis A16 SG and Almatis A15 SG, are compared to determine the effects that the size and the distribution of the powder have on the loading of the solution using rheology. The choice of a low viscosity resin allows for a high particle loading, which is necessary for the printing of high density parts using a commercial SL printer. The Krieger-Dougherty equation was used to evaluate the maximum particle loading for the system. This study found that a bimodal distribution of micron sized powder (A15 SG) reduced the shear thickening effects caused by hydroclusters, and allows for the highest alumina powder loading. A final sintered density of 90% of the theoretical density of alumina was achieved based on the optimized formulation and printing conditions.

More Details

Changing the Engineering Design & Qualification Paradigm in Component Design & Manufacturing (Born Qualified)

Roach, Robert A.; Bishop, Joseph E.; Jared, Bradley H.; Keicher, David; Cook, Adam; Whetten, Shaun R.; Forrest, Eric C.; Stanford, Joshua; Boyce, Brad L.; Johnson, Kyle L.; Rodgers, Theron M.; Ford, Kurtis; Martinez, Mario J.; Moser, Daniel R.; Van Bloemen Waanders, Bart; Chandross, Michael E.; Abdeljawad, Fadi F.; Allen, Kyle; Stender, Michael; Beghini, Lauren L.; Swiler, Laura P.; Lester, Brian T.; Argibay, Nicolas; Brown-Shaklee, Harlan J.; Kustas, Andrew B.; Sugar, Joshua D.; Kammler, Daniel; Wilson, Mark A.

Abstract not provided.

Characterization of the Fe-Co-1.5V soft ferromagnetic alloy processed by Laser Engineered Net Shaping (LENS)

Additive Manufacturing

Kustas, Andrew B.; Susan, Donald F.; Johnson, Kyle L.; Whetten, Shaun R.; Rodriguez, Mark A.; Dagel, Daryl; Michael, Joseph R.; Keicher, David; Argibay, Nicolas

Processing of the low workability Fe-Co-1.5V (Hiperco® equivalent) alloy is demonstrated using the Laser Engineered Net Shaping (LENS) metals additive manufacturing technique. As an innovative and highly localized solidification process, LENS is shown to overcome workability issues that arise during conventional thermomechanical processing, enabling the production of bulk, near net-shape forms of the Fe-Co alloy. Bulk LENS structures appeared to be ductile with no significant macroscopic defects. Atomic ordering was evaluated and significantly reduced in as-built LENS specimens relative to an annealed condition, tailorable through selection of processing parameters. Fine equiaxed grain structures were observed in as-built specimens following solidification, which then evolved toward a highly heterogeneous bimodal grain structure after annealing. The microstructure evolution in Fe-Co is discussed in the context of classical solidification theory and selective grain boundary pinning processes. Magnetic properties were also assessed and shown to fall within the extremes of conventionally processed Hiperco® alloys. Hiperco® is a registered trademark of Carpenter Technologies, Readings, PA.

More Details

Comparison of dielectric properties of additively manufactured vs. solvent cast polyimide dielectrics

IEEE Transactions on Dielectrics and Electrical Insulation

Appelhans, Leah; Keicher, David; Lavin, Judith M.

The permittivity, dielectric loss, and DC dielectric breakdown strength of additively manufactured, solvent-cast, and commercial polyimide films are reported As expected, commercial films performed better than both AM and solvent-cast lab-made films. Solvent-cast films generally performed better than AM films, although performance depended on the optimization of the material for the specific deposition technique. The most significant degradation of performance in all the lab-made films was in the dispersion of both the x/Df measurements and the dielectric breakdown strength (Weibull β). Commercial films had a breakdown strength of 4891 kV/cm and β = 13.0 whereas the highest performing lab-made films had a breakdown strength of 4072 kV/cm and β = 3.8. Furthermore, this increase in dispersion in all the lab-made samples is attributed to higher variability in the preparation, a higher defect level related to fabrication in the lab environment and, for some AM samples, to morphology/topology features resulting from the deposition technique.

More Details

Additive manufacturing of hybrid circuits

Annual Review of Materials Research

Bell, Nelson S.; Sarobol, Pylin; Cook, Adam; Clem, Paul; Keicher, David; Hirschfeld, Deidre A.; Hall, Aaron

There is a rising interest in developing functional electronics using additively manufactured components. Considerations in materials selection and pathways to forming hybrid circuits and devices must demonstrate useful electronic function; must enable integration; and must complement the complex shape, low cost, high volume, and high functionality of structural but generally electronically passive additively manufactured components. This article reviews several emerging technologies being used in industry and research/development to provide integration advantages of fabricating multilayer hybrid circuits or devices. First, we review a maskless, noncontact, direct write (DW) technology that excels in the deposition of metallic colloid inks for electrical interconnects. Second, we review a complementary technology, aerosol deposition (AD), which excels in the deposition of metallic and ceramic powder as consolidated, thick conformal coatings and is additionally patternable through masking. As a result, we show examples of hybrid circuits/devices integrated beyond 2-D planes, using combinations of DW or AD processes and conventional, established processes.

More Details

Selective evaporation of focusing fluid in two-fluid hydrodynamic print head

Keicher, David; Cook, Adam

The work performed in this project has demonstrated the feasibility to use hydrodynamic focusing of two fluid steams to create a novel micro printing technology for electronics and other high performance applications. Initial efforts focused solely on selective evaporation of the sheath fluid from print stream provided insight in developing a unique print head geometry allowing excess sheath fluid to be separated from the print flow stream for recycling/reuse. Fluid flow models suggest that more than 81 percent of the sheath fluid can be removed without affecting the print stream. Further development and optimization is required to demonstrate this capability in operation. Print results using two-fluid hydrodynamic focusing yielded a 30 micrometers wide by 0.5 micrometers tall line that suggests that the cross-section of the printed feature from the print head was approximately 2 micrometers in diameter. Printing results also demonstrated that complete removal of the sheath fluid is not necessary for all material systems. The two-fluid printing technology could enable printing of insulated conductors and clad optical interconnects. Further development of this concept should be pursued.

More Details

Free form fabrication using the laser engineered net shaping (LENS{trademark}) process

Keicher, David

Sandia National Laboratories is developing a technology called Laser Engineered Net Shaping{trademark} (LENS{trademark}). This process allows complex 3-dimensional solid metallic objects to be directly fabricated for a CAD solid model. Experiments performed demonstrate that complex alloys such as Inconel{trademark} 625 and ANSI stainless steel alloy 316 can be used in the LENS{trademark} process to produce solid metallic-shapes. In fact, the fabricated structures exhibit grain growth across the deposition layer boundaries. Mechanical testing data of deposited 316 stainless steel material indicates that the deposited material strength and elongation are greater than that reported for annealed 316 stainless steel. Electron microprobe analysis of the deposited Inconel{trademark} 625 material shows no compositional degradation of the 625 alloy and that 100% dense structures can be obtained using this technique. High speed imaging used to acquire process data during experimentation shows that the powder particle size range can significantly affect the stability, and subsequently, the performance of the powder deposition process. Finally, dimensional studies suggest that dimensional accuracy to {+-} 0.002 inches (in the horizontal direction) can be maintained.

More Details

Laser Engineered Net Shaping (LENS{trademark}) for additive component processing

Keicher, David

Sandia National Laboratories is presently developing an additive component processing technology called Laser Engineered Net Shaping, (LENS{trademark}). This process allows complex 3-dimensional solid metallic objects to be directly fabricated from a CAD solid model. Currently, this process functions similar to the Stereo Lithography process in which a faceted file is generated from the CAD solid model and then sliced into a sequence of layers. The sliced file is then input into another interpreter program which converts the sliced file into a series of tool path patterns required to build the entire layer. The component is fabricated by first generating an outline of the key component features and then filled using a rastering technique. This file is then used to drive the laser system to produce the desired component one layer at a time. This process differs from present rapid prototyping (RP) processes in that a fully dense, metallic component can be produced using this process.

More Details

Lens designs for high irradiance application of multi-kilowatt Nd:YAG welding lasers

Keicher, David

Multi-kilowatt Nd:YAG lasers provide an appealing solution for aluminum laser welding applications due to increased bulk absorption and ease of beam delivery as compared to high power CO{sub 2} laser systems. However, high numerical aperture optics are required to overcome the relatively poor beam quality associated with these lasers and to achieve a high irradiance. Several lens designs have been developed and evaluated to achieve the high irradiance values required to provide good coupling into aluminum alloys. The results of these tests demonstrate that near diffraction limited performance can be achieved for high numerical aperture elements. Additionally, an inverse-telephoto lens design has been developed and characterized to further demonstrate the feasibility of producing a high irradiance with a functional working distance from the weld surface.

More Details

High conversion efficiency pumped-cavity second harmonic generation of a diode laser

Keicher, David

To investigate the feasibility of producing a compact, efficient blue laser source, pumped-cavity second harmonic generation of diode lasers was explored. It is desirable to have such lasers to increase optical disk storage density, for color displays and for under-the-sea green-blue optical signal transmission. Based on assumed cavity losses, a cavity was designed and numerical analysis predicted an overall conversion efficiency to the second harmonic wavelength of 76% from a 75 mW diode laser. The diode laser used in these experiments had a single longitudinal and a single transverse mode output at 860 nm. The best conversion efficiency obtained (26%) was less than optimum due to the 2.5% single-pass linear losses associated with the cavity. However, calculations based on these higher losses are in good agreement with the experimentally determined values. In additions, a factor of 1.65 increase in the second harmonic output power is anticipated by reducing the input mirror reflectivity to better impedance-match the cavity. With this relatively low second harmonic conversion, the power to light conversion is 7.8%.

More Details

Laser soldering of Sn plated brass integrator assembly housings

Keicher, David

The high conductivity provided by solder closure joints of component housings is sometimes required to ensure electrical shielding of the components contained within. However, using a soldering iron to produce the solder joints can lead to charring of the insulating materials within the housing. To overcome this problem, the localized heating characteristics of laser soldering can be exploited. Feasibility of laser soldering Sn plated brass housings with a CW Nd:YAG laser has been investigated. It has been determined that laser soldering of these housings using a low solids solder flux is a viable technique and will minimize the amount of heat input to the enclosed electronic components. Metallographic analysis has shown good wetting of the solder on the housing components. Accelerated aging experiments indicate that no significant corrosion potential due to solder flux residues exists. Although a low solids flux was used to make the joints, initial results indicate that a fluxless technique can be developed to eliminate fluxes completely.

More Details
53 Results
53 Results