Publications

Results 3201–3300 of 9,998

Search results

Jump to search filters

A distributed-memory hierarchical solver for general sparse linear systems

Parallel Computing

Rajamanickam, Sivasankaran R.; Chen, Chao; Pouransari, Hadi; Boman, Erik G.; Darve, Eric

We present a parallel hierarchical solver for general sparse linear systems on distributed-memory machines. For large-scale problems, this fully algebraic algorithm is faster and more memory-efficient than sparse direct solvers because it exploits the low-rank structure of fill-in blocks. Depending on the accuracy of low-rank approximations, the hierarchical solver can be used either as a direct solver or as a preconditioner. The parallel algorithm is based on data decomposition and requires only local communication for updating boundary data on every processor. Moreover, the computation-to-communication ratio of the parallel algorithm is approximately the volume-to-surface-area ratio of the subdomain owned by every processor. We present various numerical results to demonstrate the versatility and scalability of the parallel algorithm.

More Details

Simple effective conservative treatment of uncertainty from sparse samples of random functions

ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems. Part B. Mechanical Engineering

Romero, Vicente J.; Schroeder, Benjamin B.; Dempsey, James F.; Lewis, John R.; Breivik, Nicole L.; Orient, George E.; Antoun, Bonnie R.; Winokur, Justin W.; Glickman, Matthew R.; Red-Horse, John R.

This paper examines the variability of predicted responses when multiple stress-strain curves (reflecting variability from replicate material tests) are propagated through a finite element model of a ductile steel can being slowly crushed. Over 140 response quantities of interest (including displacements, stresses, strains, and calculated measures of material damage) are tracked in the simulations. Each response quantity’s behavior varies according to the particular stress-strain curves used for the materials in the model. We desire to estimate response variability when only a few stress-strain curve samples are available from material testing. Propagation of just a few samples will usually result in significantly underestimated response uncertainty relative to propagation of a much larger population that adequately samples the presiding random-function source. A simple classical statistical method, Tolerance Intervals, is tested for effectively treating sparse stress-strain curve data. The method is found to perform well on the highly nonlinear input-to-output response mappings and non-standard response distributions in the can-crush problem. The results and discussion in this paper support a proposition that the method will apply similarly well for other sparsely sampled random variable or function data, whether from experiments or models. Finally, the simple Tolerance Interval method is also demonstrated to be very economical.

More Details

Formulation and computation of dynamic, interface-compatible Whitney complexes in three dimensions

Journal of Computational Physics

Siefert, Christopher S.; Kramer, Richard M.; Voth, Thomas E.; Bochev, Pavel B.

A discrete De Rham complex enables compatible, structure-preserving discretizations for a broad range of partial differential equations problems. Such discretizations can correctly reproduce the physics of interface problems, provided the grid conforms to the interface. However, large deformations, complex geometries, and evolving interfaces makes generation of such grids difficult. We develop and demonstrate two formally equivalent approaches that, for a given background mesh, dynamically construct an interface-conforming discrete De Rham complex. Both approaches start by dividing cut elements into interface-conforming subelements but differ in how they build the finite element basis on these subelements. The first approach discards the existing non-conforming basis of the parent element and replaces it by a dynamic set of degrees of freedom of the same kind. The second approach defines the interface-conforming degrees of freedom on the subelements as superpositions of the basis functions of the parent element. These approaches generalize the Conformal Decomposition Finite Element Method (CDFEM) and the extended finite element method with algebraic constraints (XFEM-AC), respectively, across the De Rham complex.

More Details

Sparse Matrix-Matrix Multiplication on Multilevel Memory Architectures: Algorithms and Experiments

Deveci, Mehmet D.; Hammond, Simon D.; Wolf, Michael W.; Rajamanickam, Sivasankaran R.

Architectures with multiple classes of memory media are becoming a common part of mainstream supercomputer deployments. So called multi-level memories offer differing characteristics for each memory component including variation in bandwidth, latency and capacity. This paper investigates the performance of sparse matrix multiplication kernels on two leading highperformance computing architectures — Intel's Knights Landing processor and NVIDIA's Pascal GPU. We describe a data placement method and a chunking-based algorithm for our kernels that exploits the existence of the multiple memory spaces in each hardware platform. We evaluate the performance of these methods w.r.t. standard algorithms using the auto-caching mechanisms Our results show that standard algorithms that exploit cache reuse performed as well as multi-memory-aware algorithms for architectures such as Ki\iLs where the memory subsystems have similar latencies. However, for architectures such as GPUS where memory subsystems differ significantly in both bandwidth and latency, multi-memory-aware methods are crucial for good performance. In addition, our new approaches permit the user to run problems that require larger capacities than the fastest memory of each compute node without depending on the software-managed cache mechanisms.

More Details

Compressed sensing with sparse corruptions: Fault-tolerant sparse collocation approximations

Adcock, Ben; Bao, Anyi; Jakeman, John D.; Naryan, Akil

The recovery of approximately sparse or compressible coefficients in a polynomial chaos expansion is a common goal in many modern parametric uncertainty quantification (UQ) problems. However, relatively little effort in UQ has been directed toward theoretical and computational strategies for addressing the sparse corruptions problem, where a small number of measurements are highly corrupted. Such a situation has become pertinent today since modern computational frameworks are sufficiently complex with many interdependent components that may introduce hardware and software failures, some of which can be difficult to detect and result in a highly polluted simulation result. In this paper we present a novel compressive sampling-based theoretical analysis for a regularized t1 minimization algorithm that aims to recover sparse expansion coefficients in the presence of measurement corruptions. Our recovery results are uniform (the theoretical guarantees hold for all compressible signals and compressible corruptions vectors), and prescribe algorithmic regularization parameters in terms of a user-defined a priori estimate on the ratio of measurements that are believed to be corrupted. We also propose an iteratively reweighted optimization algorithm that automatically refines the value of the regularization parameter, and empirically produces superior results. Our numerical results test our framework on several medium-to-high dimensional examples of solutions to parameterized differential equations, and demonstrate the effectiveness of our approach.

More Details

ECP ST Capability Assesment Report VTK-m

Moreland, Kenneth D.

The ECP/VTK-m project is providing the core capabilities to perform scientific visualization on exascale architectures. The ECP/VTK-m project fills the critical feature gap of performing visualization and analysis on processors like graphics-based processors and many integrated core. The results of this project will be delivered in tools like Para View, Vislt, and Ascent as well as in stand-alone form. Moreover, these projects are depending on this ECP effort to be able to make effective use of ECP architectures.

More Details

Rebooting Computers to Avoid Meltdown and Spectre

Computer

Conte, Thomas M.; DeBenedictis, Erik; Mendelson, Avi; Milojicic, Dejan

Security vulnerabilities such as Meltdown and Spectre demonstrate how chip complexity grew faster than our ability to manage unintended consequences. Attention to security from the outset should be part of the rememdy, yet complexity must be controlled at a more fundamental level.

More Details

Exploiting Geometric Partitioning in Task Mapping for Parallel Computes

Deveci, Mehmet D.; Devine, Karen D.; Laros, James H.; Taylor, Mark A.; Rajamanickam, Sivasankaran R.; Catalyurek, Umit V.

We present a new method for mapping applications' MPI tasks to cores of a parallel computer such that applications' communication time is reduced. We address the case of sparse node allocation, where the nodes assigned to a job are not necessarily located in a contiguous block nor within close proximity to each other in the network, although our methods generalize to contiguous allocations as well. The goal is to assign tasks to cores so that interdependent tasks are performed by "nearby' cores, thus lowering the distance messages must travel, the amount of congestion in the network, and the overall cost of communication. Our new method applies a geometric partitioning algorithm to both the tasks and the processors, and assigns task parts to the corresponding processor parts. We also present a number of algorithmic optimizations that exploit specific features of the network or application. We show that, for the structured finite difference mini-application MiniGhost, our mapping methods reduced communication time up to 75% relative to MiniGhost's default mapping on 128K cores of a Cray XK7 with sparse allocation. For the atmospheric modeling code E3SM/HOMME, our methods reduced communication time up to 31% on 32K cores of an IBM BlueGene/Q with contiguous allocation.

More Details

Fundamental limits to single-photon detection determined by quantum coherence and backaction

Physical Review A

Young, Steve M.; Sarovar, Mohan S.; Leonard, Francois L.

Single-photon detectors have achieved impressive performance and have led to a number of new scientific discoveries and technological applications. Existing models of photodetectors are semiclassical in that the field-matter interaction is treated perturbatively and time-separated from physical processes in the absorbing matter. An open question is whether a fully quantum detector, whereby the optical field, the optical absorption, and the amplification are considered as one quantum system, could have improved performance. Here we develop a theoretical model of such photodetectors and employ simulations to reveal the critical role played by quantum coherence and amplification backaction in dictating the performance. We show that coherence and backaction lead to trade-offs between detector metrics and also determine optimal system designs through control of the quantum-classical interface. Importantly, we establish the design parameters that result in a ideal photodetector with 100% efficiency, no dark counts, and minimal jitter, thus paving the route for next-generation detectors.

More Details

An overview of methods to identify and manage uncertainty for modelling problems in the water-environment-agriculture cross-sector

Mathematics for Industry

Jakeman, Anthony J.; Jakeman, John D.

Uncertainty pervades the representation of systems in the water–environment–agriculture cross-sector. Successful methods to address uncertainties have largely focused on standard mathematical formulations of biophysical processes in a single sector, such as partial or ordinary differential equations. More attention to integrated models of such systems is warranted. Model components representing the different sectors of an integrated model can have less standard, and different, formulations to one another, as well as different levels of epistemic knowledge and data informativeness. Thus, uncertainty is not only pervasive but also crosses boundaries and propagates between system components. Uncertainty assessment (UA) cries out for more eclectic treatment in these circumstances, some of it being more qualitative and empirical. Here in this paper, we discuss the various sources of uncertainty in such a cross-sectoral setting and ways to assess and manage them. We have outlined a fast-growing set of methodologies, particularly in the computational mathematics literature on uncertainty quantification (UQ), that seem highly pertinent for uncertainty assessment. There appears to be considerable scope for advancing UA by integrating relevant UQ techniques into cross-sectoral problem applications. Of course this will entail considerable collaboration between domain specialists who often take first ownership of the problem and computational methods experts.

More Details

Shock compression of strongly correlated oxides: A liquid-regime equation of state for cerium(IV) oxide

Physical Review B

Weck, Philippe F.; Cochrane, Kyle C.; Root, Seth R.; Lane, James M.; Shulenburger, Luke N.; Carpenter, John H.; Mattsson, Thomas M.; Vogler, Tracy V.

The shock Hugoniot for full-density and porous CeO2 was investigated in the liquid regime using ab initio molecular dynamics (AIMD) simulations with Erpenbeck's approach based on the Rankine-Hugoniot jump conditions. The phase space was sampled by carrying out NVT simulations for isotherms between 6000 and 100 000 K and densities ranging from ρ=2.5 to 20g/cm3. The impact of on-site Coulomb interaction corrections +U on the equation of state (EOS) obtained from AIMD simulations was assessed by direct comparison with results from standard density functional theory simulations. Classical molecular dynamics (CMD) simulations were also performed to model atomic-scale shock compression of larger porous CeO2 models. Results from AIMD and CMD compression simulations compare favorably with Z-machine shock data to 525 GPa and gas-gun data to 109 GPa for porous CeO2 samples. Using results from AIMD simulations, an accurate liquid-regime Mie-Grüneisen EOS was built for CeO2. In addition, a revised multiphase SESAME-Type EOS was constrained using AIMD results and experimental data generated in this work. This study demonstrates the necessity of acquiring data in the porous regime to increase the reliability of existing analytical EOS models.

More Details

Sierra/Solid Mechanics 4.48 User's Guide

Merewether, Mark T.; Crane, Nathan K.; de Frias, Gabriel J.; Le, San L.; Littlewood, David J.; Mosby, Matthew D.; Pierson, Kendall H.; Porter, V.L.; Shelton, Timothy S.; Thomas, Jesse D.; Tupek, Michael R.; Veilleux, Michael V.; Gampert, Scott G.; Xavier, Patrick G.; Plews, Julia A.

Sierra/SolidMechanics (Sierra/SM) is a Lagrangian, three-dimensional code for finite element analysis of solids and structures. It provides capabilities for explicit dynamic, implicit quasistatic and dynamic analyses. The explicit dynamics capabilities allow for the efficient and robust solution of models with extensive contact subjected to large, suddenly applied loads. For implicit problems, Sierra/SM uses a multi-level iterative solver, which enables it to effectively solve problems with large deformations, nonlinear material behavior, and contact. Sierra/SM has a versatile library of continuum and structural elements, and a large library of material models. The code is written for parallel computing environments enabling scalable solutions of extremely large problems for both implicit and explicit analyses. It is built on the SIERRA Framework, which facilitates coupling with other SIERRA mechanics codes. This document describes the functionality and input syntax for Sierra/SM.

More Details

Challenges in Visual Analysis of Ensembles

IEEE Computer Graphics and Applications

Crossno, Patricia J.

Modeling physical phenomena through computational simulation increasingly relies on generating a collection of related runs, known as an ensemble. This article explores the challenges we face in developing analysis and visualization systems for large and complex ensemble data sets, which we seek to understand without having to view the results of every simulation run. Implementing approaches and ideas developed in response to this goal, we demonstrate the analysis of a 15K run material fracturing study using Slycat, our ensemble analysis system.

More Details

Special issue on uncertainty quantification in multiscale system design and simulation

ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering

Swiler, Laura P.; Wang, Yan

The importance of uncertainty has been recognized in various modeling, simulation, and analysis applications, where inherent assumptions and simplifications affect the accuracy of model predictions for physical phenomena. As model predictions are now heavily relied upon for simulation-based system design, which includes new materials, vehicles, mechanical and civil structures, and even new drugs, wrong model predictions could potentially cause catastrophic consequences. Therefore, uncertainty and associated risks due to model errors should be quantified to support robust systems engineering.

More Details
Results 3201–3300 of 9,998
Results 3201–3300 of 9,998