Publications

9 Results

Search results

Jump to search filters

Development of machine learning models for turbulent wall pressure fluctuations

AIAA SciTech Forum - 55th AIAA Aerospace Sciences Meeting

Ling, Julia L.; Barone, Matthew F.; Davis, Warren L.; Chowdhary, Kamaljit S.; Fike, Jeffrey A.

In many aerospace applications, it is critical to be able to model fluid-structure interactions. In particular, correctly predicting the power spectral density of pressure fluctuations at surfaces can be important for assessing potential resonances and failure modes. Current turbulence modeling methods, such as wall-modeled Large Eddy Simulation and Detached Eddy Simulation, cannot reliably predict these pressure fluctuations for many applications of interest. The focus of this paper is on efforts to use data-driven machine learning methods to learn correction terms for the wall pressure fluctuation spectrum. In particular, the non-locality of the wall pressure fluctuations in a compressible boundary layer is investigated using random forests and neural networks trained and evaluated on Direct Numerical Simulation data.

More Details

Machine learning models of errors in large eddy simulation predictions of surface pressure fluctuations

47th AIAA Fluid Dynamics Conference, 2017

Barone, Matthew F.; Fike, Jeffrey A.; Chowdhary, Kamaljit S.; Davis, Warren L.; Ling, Julia L.; Martin, Shawn

We investigate a novel application of deep neural networks to modeling of errors in prediction of surface pressure fluctuations beneath a compressible, turbulent flow. In this context, the truth solution is given by Direct Numerical Simulation (DNS) data, while the predictive model is a wall-modeled Large Eddy Simulation (LES). The neural network provides a means to map relevant statistical flow-features within the LES solution to errors in prediction of wall pressure spectra. We simulate a number of flat plate turbulent boundary layers using both DNS and wall-modeled LES to build up a database with which to train the neural network. We then apply machine learning techniques to develop an optimized neural network model for the error in terms of relevant flow features.

More Details
9 Results
9 Results