The Hong-Ou-Mandel (HOM) effect is a fascinating quantum phenomenon that defies classical explanation. Traditionally, remote nonlinear sources have been used to achieve coincident photons at the HOM beam splitter. Here, we suggest that the coincident emission source required for HOM interference can be created locally using superradiant near field coupled emitters positioned across the beam splitter gap. We show that sensitivity to permittivity changes in the beam splitter gap, and corresponding Fisher information can be substantially enhanced with HOM photon detection. Subsequently, we outline several strategies for integration of superradiant emitters with practical sensor systems. Taken together, these findings should pave a way for a wide array of near field HOM quantum sensors and novel quantum devices.
The National Solar Thermal Test Facility (NSTTF) at Sandia National Laboratories New Mexico (SNL/NM) developed this Life Cycle Management Plan (LCMP) to document its process for executing, monitoring, controlling and closing-out Phase 3 of the Gen 3 Particle Pilot Plant (G3P3). This plan serves as a resource for stakeholders who wish to be knowledgeable of project objectives and how they will be accomplished.
Estimation of two-phase fluid flow properties is important to understand and predict water and gas movement through the vadose zone for agricultural, hydrogeological, and engineering applications, such as for vapor-phase contaminant transport and/or containment of noble gases in the subsurface. In this second progress report of FY22, we present two ongoing activities related to imbibition testing on volcanic rock samples. We present the development of a new analytical solution predicting the temperature response observed during imbibition into dry samples, as discussed in our previous first progress report for FY22. We also illustrate the use of a multi-modal capillary pressure distribution to simulate both early- and late-time imbibition data collected on tuff core that can exhibit multiple pore types. These FY22 imbibition tests were conducted for an extended period (i.e., far beyond the time required for the wetting front to reach the top of the sample), which is necessary for parameter estimation and characterization of two different pore types within the samples.
Quantifying the sensitivity - how a quantity of interest (QoI) varies with respect to a parameter – and response – the representation of a QoI as a function of a parameter - of a computer model of a parametric dynamical system is an important and challenging problem. Traditional methods fail in this context since sensitive dependence on initial conditions implies that the sensitivity and response of a QoI may be ill-conditioned or not well-defined. If a chaotic model has an ergodic attractor, then ergodic averages of QoIs are well-defined quantities and their sensitivity can be used to characterize model sensitivity. The response theorem gives sufficient conditions such that the local forward sensitivity – the derivative with respect to a given parameter - of an ergodic average of a QoI is well-defined. We describe a method based on ergodic and response theory for computing the sensitivity and response of a given QoI with respect to a given parameter in a chaotic model with an ergodic and hyperbolic attractor. This method does not require computation of ensembles of the model with perturbed parameter values. The method is demonstrated and some of the computations are validated on the Lorenz 63 and Lorenz 96 models.
The How To Manual supplements the User’s Manual and the Theory Manual. The goal of the How To Manual is to reduce learning time for complex end to end analyses. These documents are intended to be used together. See the User’s Manual for a complete list of the options for a solution case. All the examples are part of the Sierra/SD test suite. Each runs as is. The organization is similar to the other documents: How to run, Commands, Solution cases, Materials, Elements, Boundary conditions, and then Contact. The table of contents and index are indispensable. The Geometric Rigid Body Modes section is shared with the Users Manual.
Performance of geologic radioactive waste repositories depends on near-field and far-field processes, including km-scale flow and transport in engineered and natural barriers, that may require simulations of up to 1 M years of regulatory period. For a relatively short time span (less than 1000 years), the thermohydro-mechanical-chemical (THMC) coupled processes caused by heat from the waste package will influence near-field multiphase flow, chemical/reactive transport, and mechanical behaviors in the repository system. This study integrates the heat-driven perturbations in thermo-hydro-mechanical characteristics into thermo-hydro-chemical simulations using PFLOTRAN to reduce dimensionality and improve computational efficiency by implementing functions of stress-dependent permeability and saturation-temperature-dependent thermal conductivity. These process couplings are developed for spent nuclear fuel in dual-purpose canisters in two different hypothetical repositories: a shale repository and a salt repository.
Nitric Oxide (NO) can significantly influence the autoignition reactivity and this can affect knock limits in conventional stoichiometric SI engines. Previous studies also revealed that the role of NO changes with fuel type. Fuels with high RON (Research Octane Number) and high Octane Sensitivity (S = RON - MON (Motor Octane Number)) exhibited monotonically retarding knock-limited combustion phasing (KL-CA50) with increasing NO. In contrast, for a high-RON, low-S fuel, the addition of NO initially resulted in a strongly retarded KL-CA50 but beyond the certain amount of NO, KL-CA50 advanced again. The current study focuses on same high-RON, low-S Alkylate fuel to better understand the mechanisms responsible for the reversal in the effect of NO on KL-CA50 beyond a certain amount of NO. Experiments were conducted to measure the responses of KL-CA50 and trace-autoignition CA50, the latter being indicative of CA50 at which end-gas autoignition starts to become measurable from the apparent heat-release rate. Chemical-kinetics simulations were conducted to reveal the role of NO for end-gas autoignition, with a specific focus on sequential autoignition in a thermally stratified end-gas. The simulation results reveal that the magnitude of low-temperature heat release (LTHR) generally increases with NO. However, the relative importance of NO for enhancing LTHR diminishes when the LTHR inherent to a fuel's chemistry is strong, such as at lower temperatures in a thermal boundary layer. This rendered more uniform LTHR within a hypothetical thermal boundary and led to a more sequential (i.e. slower) autoignition event. It was also revealed that a change in compression ratio influences the importance of intermediate-temperature heat release (ITHR) due to changes of the temperature-pressure history of the end-gas. Together with the condition where end-gas autoignition occurs more sequentially, the shorter time spent in LTHR and ITHR regime can counter the increase in autoignition reactivity at high NO levels and allow KL-CA50 to advance.
Particle-in-cell simulations are used to study how neutral pressure influences plasma properties at the sheath edge. The high rate of ion–neutral collisions at pressures above several mTorr are found to cause a decrease in the ion velocity at the sheath edge (collisional Bohm criterion), a decrease in the edge-to-center density ratio (hl factor), and an increase in the sheath width and sheath potential drop. A comparison with existing analytic models generally indicates favorable agreement, but with some distinctions. One is that models for the hl factor need to be made consistent with the collisional Bohm criterion. With this and similar corrections, a comprehensive fluid-based model of the plasma boundary transition is constructed that compares well with the simulation results.
Molybdenum disulfide (MoS2) is a lamellar solid lubricant often used in aerospace applications because of its extremely low friction coefficient (∼0.01) in inert environments. The lubrication performance of MoS2 is significantly impaired by exposure to even small amounts of water and oxygen, and the mechanisms behind this remain poorly understood. We use density functional theory calculations to study the binding of water on MoS2 sheets with and without defects. In general, we find that pristine MoS2 is slightly hydrophilic but that defects greatly increase the binding affinity for water. Intercalated water disrupts the crystal structure of bulk MoS2 due to the limited space between lamellae (∼3.4 Å), and this leads to generally unfavorable adsorption, except in the cases where water molecules are located on the sites of sulfur vacancies. We also find that water adsorption is more favorable directly below a surface layer of MoS2 compared to in the bulk.
Michelsen, Hope A.; Campbell, Matthew F.; Johansson, K.O.; Tran, Ich C.; Schrader, Paul; Bambha, Ray; Cenker, Emre; Hammons, Joshua A.; Zhu, Chenhui; Schaible, Eric; Van Buuren, Anthony
We have characterized soot particles measured in situ in a laminar co-flow ethylene-air diffusion flame using small-angle X-ray scattering (SAXS). The analysis includes temperature measurements made with coherent anti-Stokes Raman spectroscopy (CARS) and complements soot volume-fraction and maturity measurements made with laser-induced incandescence (LII). We compared the results of fits to the SAXS measurements using a unified model and a fractal core-shell model. Power-law parameters yielded by the unified model indicate that aggregates of primary particles are in the mass-fractal regime, whereas the primary particles are in the surface-fractal regime in the middle of the flame. Higher and lower in the flame, the primary-particle power-law parameter approaches 4, suggesting smooth primary particles. These trends are consistent with fits using the fractal core-shell model, which indicate that particles have an established core-shell structure in the middle of the flame and are internally homogeneous at higher and lower heights in the flame. Primary-particle size distributions derived using the fractal core-shell model demonstrate excellent agreement with distributions inferred from transmission electron microscopy (TEM) images in the middle of the flame. Higher in the flame, a second small mode appears in the size distributions, suggesting particle fragmentation during oxidation. Surface oxidation would explain (1) aggregate fragmentation and (2) loss of core-shell structure leading to smoother primary-particle surfaces by removal of carbon overlayers. SAXS measurements are much more sensitive to incipient and young soot particles than LII and demonstrate significant volume fraction from particles low in the flame where the LII signal is negligible.
Herein the dynamic deformation response of two quenching and partitioning (Q&P) steels was investigated using a high strain rate tension pressure bar and in-situ synchrotron radiography and diffraction. This allowed for concurrent measurements of the martensitic transformation, the elastic strains/stresses on the martensite and ferrite, and the bulk mechanical behavior. The steel with the greater fraction of ferrite exhibited greater ductility and lower strength, suggesting that dislocation slip in ferrite enhanced the deformability. Meanwhile, the kinetics of the martensitic transformation appeared similar for both steels, although the steel with a greater ferrite fraction retained more austenite in the neck after fracture.
This document presents tests from the Sierra Structural Mechanics verification test suite. Each of these tests is run nightly with the Sierra/SD code suite and the results of the test checked versus the correct analytic result. For each of the tests presented in this document the test setup, derivation of the analytic solution, and comparison of the Sierra/SD code results to the analytic solution is provided. This document can be used to confirm that a given code capability is verified or referenced as a compilation of example problems.
Childhood body mass index (BMI) is a widely used measure of adiposity in children (<18 years of age). Children grow with individual tempo and individuals of the same age, or of the same BMI, might be in different phases in their individual growth curves. Variability between different childhood BMI curves can be separated in two components: phase variability (x-axis; time) and amplitude variability (y-axis; BMI). Phase variability can be thought of arising from differences in maturational age between individuals. This is related to the timing of peaks and valleys in a child’s BMI curve.