ALEGRA is a multiphysics finite-element shock hydrodynamics code, under development at Sandia National Laboratories since 1990. Fully coupled multiphysics capabilities include transient magnetics, magnetohydrodynamics, electromechanics, and radiation transport. Importantly, ALEGRA is used to study hypervelocity impact, pulsed power devices, and radiation effects. The breadth of physics represented in ALEGRA is outlined here, along with simulated results for a selected hypervelocity impact experiment.
Explosively driven ferroelectric generators (FEG) are used as pulsed power sources in many applications that require a compact design that delivers a short high-voltage and high-current pulse. A mechanical shock applied to ferroelectrics releases bound electrical charge through a combination of piezoelectric, domain reorientation, and phase transformation effects. Lead-zirconate-titanate (PZT) 95/5 lies near the ferroelectric (FE)-antiferroelectric (AF) phase boundary and readily transforms to AF phase under compression because AF has a smaller unit volume. This makes it a popular choice for FEGs as the FE-AF transformation completely releases all the stored dipole charge. The complexity of piezoelectric, domain reorientation, and phase transformation behaviors under high deviatoric stress makes modeling this FE to AF transformation and the accompanying charge release challenging. The mode and direction of domain reorientation and phase transformation varies significantly with different deviatoric and hydrostatic stress states. Microstructure changes due to domain reorientation and phase alter the piezoelectric properties of the material. Inaccuracies in modeling any one of these phenomena can result in inaccurate electrical response. This work demonstrates a material model that accurately captures the linear piezoelectric, domain reorientation and phase transformation phenomena by using a micromechanical approach to approximate the changes in domain-structure.
Explosively driven ferroelectric generators (FEG) are used as pulsed power sources in many applications that require a compact design that delivers a short high-voltage and high-current pulse. A mechanical shock applied to ferroelectrics releases bound electrical charge through a combination of piezoelectric, domain reorientation, and phase transformation effects. Lead-zirconate-titanate (PZT) 95/5 lies near the ferroelectric (FE)-antiferroelectric (AF) phase boundary and readily transforms to AF phase under compression because AF has a smaller unit volume. This makes it a popular choice for FEGs as the FE-AF transformation completely releases all the stored dipole charge. The complexity of piezoelectric, domain reorientation, and phase transformation behaviors under high deviatoric stress makes modeling this FE to AF transformation and the accompanying charge release challenging. The mode and direction of domain reorientation and phase transformation varies significantly with different deviatoric and hydrostatic stress states. Microstructure changes due to domain reorientation and phase alter the piezoelectric properties of the material. Inaccuracies in modeling any one of these phenomena can result in inaccurate electrical response. This work demonstrates a material model that accurately captures the linear piezoelectric, domain reorientation and phase transformation phenomena by using a micromechanical approach to approximate the changes in domain-structure.
The purpose of this memo is to analytically investigate the possible effects of thermal expansion on the electromechanical properties of the Sumida Components GmbH piezoelectric composite disk followed by experimental verification. Linear electromechanical, electrothermal, and thermomechanical constitutive law is assumed.
This report develops and documents linear and nonlinear constitutive relations implemented in ALEGRA-FE (ferroelectric). A thermodynamic framework is created to describe the electromechanical system in the form of a free energy functional. Constitutive relations are derived by taking series expansions of the free energy functional with respect to the independent fields. First order expansion terms yield linear constitutive relations and higher order expansion terms yield non-linear constitutive relations. This document serves as supplement to Section 4 of Sandia Report SAND2013-7363, Rev 3. Methods for implementation of kinematic relations of piezoelectric models and rotation of material principal axes are covered in the supplemented report. Additional discussion on phase velocity calculation is also presented.
The SNL SPD Association represents all personnel that are classified as Postdoctoral Appointees at Sandia National Laboratories. The purpose of the SNL SPD Association is to address the needs and concerns of Postdoctoral Appointees within Sandia National Laboratories.
The purpose of this document is to define the rules of governance for the Sandia Postdoctoral Development (SPD) Association. This includes election procedures for filling vacancies on the SPD board, an all-purpose voting procedure, and definitions for the roles and responsibilities of each SPD board member. The voting procedures can also be used to amend the by-laws, as well as to create, dissolve, or consolidate vacant SPD board positions.