Gaussian Process Regression Constrained by Boundary Value Problems
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Journal of Solar Energy Engineering, Transactions of the ASME
Falling particle receivers are an emerging technology for use in concentrating solar power systems. In this study, quartz half-shells are investigated for use as full or partial aperture covers to reduce receiver thermal losses. Quartz half-shell aperture covers offer the ability to minimally interfere with incoming solar radiation from the heliostat field while obstructing thermal radiation and advection from leaving the receiver cavity. The fluid dynamics and heat transfer of a receiver subdomain and surrounding air are modeled using ANSYS® FLUENT. We compare the percentage of total incident solar power lost due to conduction through the receiver walls, advective losses through the aperture, and radiation exiting the aperture. Contrary to expected outcomes, results show that quartz aperture covers can increase radiative losses and result in modest to nonexistent reductions in advective losses. The increased radiative losses are driven by elevated quartz half-shell temperatures and have the potential to be mitigated by active cooling and/or material selection. Quartz half-shell total transmissivity was measured experimentally using a radiometer and the National Solar Thermal Test Facility heliostat field with values up to 0.97 ± 0.01. Quartz half-shell aperture covers did not yield expected efficiency gains in numerical results due to increased radiative losses, but efficiency improvement in some numerical results and the performance of quartz half-shells subject to concentrated solar radiation suggest that quartz half-shell aperture covers should be investigated further.
Abstract not provided.
Abstract not provided.
Abstract not provided.
We propose developing numerical methods informed by novel experimental diagnostics that transition from solid-to-fluid, while accurately predicting the stress and deformation regardless of phase.
Abstract not provided.
This report documents the updated seismic shake table test plan. The report describes the shake table inputs (ground motions), test hardware, shake table facility, friction experiment, and proposed instrumentation.
This report summarizes the international collaborations conducted by Sandia funded by the US Department of Energy Office (DOE) of Nuclear Energy Spent Fuel and Waste Science & Technology (SFWST) as part of the Sandia National Laboratories Salt R&D and Salt International work packages. This report satisfies the level-three milestone M3SF-22SN010303063. Several stand-alone sections make up this summary report, each completed by the participants. The sections discuss international collaborations on geomechanical benchmarking exercises (WEIMOS), granular salt reconsolidation (KOMPASS), engineered barriers (RANGERS), numerical model comparison (DECOVALEX) and an NEA Salt Club working group on the development of scenarios as part of the performance assessment development process. Finally, we summarize events related to the US/German Workshop on Repository Research, Design and Operations. The work summarized in this annual update has occurred during the COVID-19 pandemic, and little international or domestic travel has occurred. Most of the collaborations have been conducted via email or as virtual meetings, but a slow return to travel and in-person meetings has begun.
This SAND Report Guide offers support to authors, technical writers, principal investigators, and others involved in the process of creating, formatting, or refining a SAND Report. It details what you need to know before you begin compiling a SAND Report, directs you to the SAND Report templates, outlines the order of elements in a SAND Report, and explains what to do when your report is completed and ready for Review and Approval and subsequent distribution. Supporting information is provided in the appendix, such as where to get technical assistance, trademarks, Microsoft Word, and equations.
ACM International Conference Proceeding Series
It has been demonstrated that grid cells in the brain are encoding physical locations using hexagonally spaced, periodic phase-space representations. We explore how such a representation may be computationally advantageous for related engineering applications. Theories of how the brain decodes from a phase-space representation have been developed based on neuroscience data. However, theories of how sensory information is encoded into this phase space are less certain. Here we show a method for how a navigation-relevant input space such as elevation trajectories may be mapped into a phase-space coordinate system that can be decoded using previously developed theories. We also consider how such an algorithm may then also be mapped onto neuromrophic systems. Just as animals can tell where they are in a local region based on where they have been, our encoding algorithm enables the localization to a position in space by integrating measurements from a trajectory over a map. In this paper, we walk through our approach with simulations using a digital elevation model.
ACM International Conference Proceeding Series
It has been demonstrated that grid cells in the brain are encoding physical locations using hexagonally spaced, periodic phase-space representations. We explore how such a representation may be computationally advantageous for related engineering applications. Theories of how the brain decodes from a phase-space representation have been developed based on neuroscience data. However, theories of how sensory information is encoded into this phase space are less certain. Here we show a method for how a navigation-relevant input space such as elevation trajectories may be mapped into a phase-space coordinate system that can be decoded using previously developed theories. We also consider how such an algorithm may then also be mapped onto neuromrophic systems. Just as animals can tell where they are in a local region based on where they have been, our encoding algorithm enables the localization to a position in space by integrating measurements from a trajectory over a map. In this paper, we walk through our approach with simulations using a digital elevation model.
Nanotechnology
Dirac semimetals have attracted a great deal of current interests due to their potential applications in topological quantum computing, low-energy electronic devices, and single photon detection in the microwave frequency range. Herein are results from analyzing the low magnetic (B) field weak-antilocalization behaviors in a Dirac semimetal Cd3As2 thin flake device. At high temperatures, the phase coherence length lΦ first increases with decreasing temperature (T) and follows a power law dependence of lΦ ∝ T–0.4. Below ~3 K, lΦ tends to saturate to a value of ~180 nm. Another fitting parameter α, which is associated with independent transport channels, displays a logarithmic temperature dependence for T > 3 K, but also tends to saturate below ~3 K. The saturation value, ~1.45, is very close to 1.5, indicating three independent electron transport channels, which we interpret as due to decoupling of both the top and bottom surfaces as well as the bulk. This result, to our knowledge, provides first evidence that the surfaces and bulk states can become decoupled in electronic transport in Dirac semimetal Cd3As2.
Journal of the American Chemical Society
We are currently witnessing the dawn of hydrogen (H2) economy, where H2 will soon become a primary fuel for heating, transportation, and longdistance and long-term energy storage. Among diverse possibilities, H2 can be stored as a pressurized gas, a cryogenic liquid, or a solid fuel via adsorption onto porous materials. Metal–organic frameworks (MOFs) have emerged as adsorbent materials with the highest theoretical H2 storage densities on both a volumetric and gravimetric basis. However, a critical bottleneck for the use of H2 as a transportation fuel has been the lack of densification methods capable of shaping MOFs into practical formulations while maintaining their adsorptive performance. Here, we report a high-throughput screening and deep analysis of a database of MOFs to find optimal materials, followed by the synthesis, characterization, and performance evaluation of an optimal monolithic MOF (monoMOF) for H2 storage. After densification, this monoMOF stores 46 g L–1 H2 at 50 bar and 77 K and delivers 41 and 42 g L–1 H2 at operating pressures of 25 and 50 bar, respectively, when deployed in a combined temperature– pressure (25–50 bar/77 K → 5 bar/160 K) swing gas delivery system. This performance represents up to an 80% reduction in the operating pressure requirements for delivering H2 gas when compared with benchmark materials and an 83% reduction compared to compressed H2 gas. Our findings represent a substantial step forward in the application of high-density materials for volumetric H2 storage applications.
Journal of Chemical Information and Modeling
The principle of least action is the cornerstone of classical mechanics, theory of relativity, quantum mechanics, and thermodynamics. Here, we describe how a neural network (NN) learns to find the trajectory for a Lennard-Jones (LJ) system that maintains balance in minimizing the Onsager-Machlup (OM) action and maintaining the energy conservation. The phase-space trajectory thus calculated is in excellent agreement with the corresponding results from the "ground-truth" molecular dynamics (MD) simulation. Furthermore, we show that the NN can easily find structural transformation pathways for LJ clusters, for example, the basin-hopping transformation of an LJ38from an incomplete Mackay icosahedron to a truncated face-centered cubic octahedron. Unlike MD, the NN computes atomic trajectories over the entire temporal domain in one fell swoop, and the NN time step is a factor of 20 larger than the MD time step. The NN approach to OM action is quite general and can be adapted to model morphometrics in a variety of applications.
Journal of Applied Physics
Nanothermite NiO-Al is a promising material system for low gas emission heat sources; yet, its reactive properties are highly dependent on material processing conditions. In the current study, sputter deposition is used to fabricate highly controlled nanolaminates comprised of alternating NiO and Al layers. Films having an overall stoichiometry of 2Al to 3NiO were produced with different bilayer thicknesses to investigate how ignition and self-sustained, high temperature reactions vary with changes to nanometer-scale periodicity and preheat conditions. Ignition studies were carried out with both hot plate and laser irradiation and compared to slow heating studies in hot-stage x-ray diffraction. Ignition behavior has bilayer thickness and heating rate dependencies. The 2Al/3NiO with λ ≤ 300 nm ignited via solid/solid diffusion mixing (activation energy, Ea = 49 ± 3 kJ/mole). Multilayers having λ≥ 500 nm required a more favorable mixing kinetics of solid/liquid dissolution into molten Al (Ea = 30 ± 4 kJ/mole). This solid/liquid dissolution Ea is a factor of 5 lower than that of the previously reported powder compacts due to the elimination of a passivating Al oxide layer present on the powder. The reactant mixing mechanism between 300 and 500 nm bilayer thicknesses was dependent on the ignition source's heating rate. The self-propagating reaction velocities of 2Al/3NiO multilayers varied from 0.4 to 2.5 m/s. Pre-heating nanolaminates to temperatures below the onset reaction temperatures associated with forming intermediate nickel aluminides at multilayer interfaces led to increased propagation velocities, whereas pre-heating samples above the onset temperatures inhibited subsequent attempts at laser ignition.
Journal of Chemical Physics
The structural and dynamical properties of nanoconfined solutions can differ dramatically from those of the corresponding bulk systems. Understanding the changes induced by confinement is central to controlling the behavior of synthetic nanostructured materials and predicting the characteristics of biological and geochemical systems. A key outstanding issue is how the molecular-level behavior of nanoconfined electrolyte solutions is reflected in different experimental, particularly spectroscopic, measurements. This is addressed here through molecular dynamics simulations of the OH stretching infrared (IR) spectroscopy of NaCl, NaBr, and NaI solutions in isotopically dilute HOD/D2O confined in hydroxylated amorphous silica slit pores of width 1-6 nm and pH ∼2. In addition, the water reorientation dynamics and spectral diffusion, accessible by pump-probe anisotropy and two-dimensional IR measurements, are investigated. The aim is to elucidate the effect of salt identity, confinement, and salt concentration on the vibrational spectra. It is found that the IR spectra of the electrolyte solutions are only modestly blue-shifted upon confinement in amorphous silica slit pores, with both the size of the shift and linewidth increasing with the halide size, but these effects are suppressed as the salt concentration is increased. This indicates the limitations of linear IR spectroscopy as a probe of confined water. However, the OH reorientational and spectral diffusion dynamics are significantly slowed by confinement even at the lowest concentrations. The retardation of the dynamics eases with increasing salt concentration and pore width, but it exhibits a more complex behavior as a function of halide.
Journal of Applied Physics
The selective amorphization of SiGe in Si/SiGe nanostructures via a 1 MeV Si+ implant was investigated, resulting in single-crystal Si nanowires (NWs) and quantum dots (QDs) encapsulated in amorphous SiGe fins and pillars, respectively. The Si NWs and QDs are formed during high-temperature dry oxidation of single-crystal Si/SiGe heterostructure fins and pillars, during which Ge diffuses along the nanostructure sidewalls and encapsulates the Si layers. The fins and pillars were then subjected to a 3 × 1015 ions/cm2 1 MeV Si+ implant, resulting in the amorphization of SiGe, while leaving the encapsulated Si crystalline for larger, 65-nm wide NWs and QDs. Interestingly, the 26-nm diameter Si QDs amorphize, while the 28-nm wide NWs remain crystalline during the same high energy ion implant. This result suggests that the Si/SiGe pillars have a lower threshold for Si-induced amorphization compared to their Si/SiGe fin counterparts. However, Monte Carlo simulations of ion implantation into the Si/SiGe nanostructures reveal similar predicted levels of displacements per cm3. Molecular dynamics simulations suggest that the total stress magnitude in Si QDs encapsulated in crystalline SiGe is higher than the total stress magnitude in Si NWs, which may lead to greater crystalline instability in the QDs during ion implant. The potential lower amorphization threshold of QDs compared to NWs is of special importance to applications that require robust QD devices in a variety of radiation environments.
A study was conducted to investigate the outgassing characteristics of four thermal filler materials. The purpose of this screening was to identify any outgassing products that might be considered reactive, specifically compounds that could result in corrosion in the systems where these materials are used. A range of compounds was observed in the sample headspaces, though most do not stand out as being known reactive species of concern. However, several halogenated compounds and sulfurous compounds- classes compounds known to facilitate corrosion reactions under certain conditions- were observed in low concentrations. The TFLEX 760 exhibited the highest total outgassing, while the GR130 had the lowest. Therm-a-Gap75 and the Si thermal grease exhibited very similar outgassing profiles. It is difficult to predict the extent to which any given compound observed in an analysis of this type might pose a risk in an actual system; factors such as temperature, system geometry, concentration, and gas conductance all play a role in the kinetics governing chemical reactions. It is recommended that the results of these analyses are shared with pertinent materials SMEs familiar with the system(s) in question to evaluate potential risks.
This report deals with the development and evaluation of a numerical model to examine applied coating to a metal substrate subjected to a ballistic impact. The numerical model will be used to examine the benefit of the coating in resisting penetration due to the impact. For a detailed examination the Retch-Ipson curve is used as a metric. The numerical data is plotted and then fit to the Retch-Ipson curve and error calculations are used to compare the difference between the numerical output and the experimental data. This initial study is an examination of a few shortcomings of the standard material models used, and demonstrate the future work that is needed to understand the ballistic behavior of materials.
Next generation ion traps will likely need to support tens if not hundreds of ions in order to achieve several logical qubits. As we scale to those sizes, the same problems we face now – rf dissipation, control I/O, and optical access – will only grow and become more complicated. While many of these challenges can potentially be solved with technology integration, independently researching the feasibility of that integration and other solutions may help reduce the time and risk in scaling up to larger traps, by testing on smaller less complex devices. We should also consider other fabrication techniques that may help scale to larger devices, such as: through-substrate-vias (TSVs), different metal coatings, exotic rf routing, on chip laser sources, or even a secondary macroscopic trap to reload ions from. To have these technologies ready for full scale integration when we need them, ion traps with some of these capabilities need to be produced now. Developing the rigorous fabrication methods for producing reliable traps takes time and experimentation. We propose developing larger ion traps and reliable integrated technology in conjunction to make both available faster.