Publications

Results 1551–1575 of 99,299

Search results

Jump to search filters

Interface potentials inside solid-state batteries: Origins and implications

MRS Bulletin

Qi, Yue; Swift, Michael W.; Fuller, Elliot J.; Talin, Albert A.

Interface resistance has become a significant bottleneck for solid-state batteries (SSBs). Most studies of interface resistance have focused on extrinsic mechanisms such as interface reactions and imperfect contact between electrodes and solid electrolytes. Interface potentials are an important intrinsic mechanism that is often ignored. Here, we highlight Kelvin probe force microscopy (KPFM) as a tool to image the local potential at interfaces inside SSBs, examining the existing literature and discussing challenges in interpretation. Drawing analogies with electron transport in metal/semiconductor interfaces, we showcase a formalism that predicts intrinsic ionic resistance based on the properties of the contacting phases, and we emphasize that future battery designs should start from material pairs with low intrinsic resistance. We conclude by outlining future directions in the study of interface potentials through both theory and experiment. Graphic abstract: [Figure not available: see fulltext.]

More Details

Effects of hydrogen isotope type on oxidation rates for trace releases

Fire Safety Journal

Shurtz, Randy C.; Brown, Alexander L.; Takahashi, Lynelle K.; Coker, Eric N.

The fraction of tritium converted to the water form in a fire scenario is one of the metrics of greatest interest for radiological safety assessments. The conversion fraction is one of the prime variables contributing to the hazard assessment. This paper presents measurements of oxidation rates for the non-radioactive hydrogen isotopes (protium and deuterium) at sub-flammable concentrations that are typical of many of the most likely tritium release scenarios. These measurements are fit to a simplified 1-step kinetic rate expression, and the isotopic trends for protium and deuterium are extrapolated to produce a model appropriate for tritium. The effects of the new kinetic models are evaluated via CFD simulations of an ISO-9705 standard room fire that includes a trace release of hydrogen isotope (tritium), illustrating the high importance of the correct (measurement-based) kinetics to the outcome of the simulated conversion.

More Details

Modeling single-molecule stretching experiments using statistical thermodynamics

Physical Review E

Buche, Michael R.; Rimsza, Jessica

Single-molecule stretching experiments are widely utilized within the fields of physics and chemistry to characterize the mechanics of individual bonds or molecules, as well as chemical reactions. Analytic relations describing these experiments are valuable, and these relations can be obtained through the statistical thermodynamics of idealized model systems representing the experiments. Since the specific thermodynamic ensembles manifested by the experiments affect the outcome, primarily for small molecules, the stretching device must be included in the idealized model system. Though the model for the stretched molecule might be exactly solvable, including the device in the model often prevents analytic solutions. In the limit of large or small device stiffness, the isometric or isotensional ensembles can provide effective approximations, but the device effects are missing. Here a dual set of asymptotically correct statistical thermodynamic theories are applied to develop accurate approximations for the full model system that includes both the molecule and the device. The asymptotic theories are first demonstrated to be accurate using the freely jointed chain model and then using molecular dynamics calculations of a single polyethylene chain.

More Details

Lipid-coated mesoporous silica nanoparticles for anti-viral applications via delivery of CRISPR-Cas9 ribonucleoproteins

Scientific Reports

LaBauve, Annette E.; Saada, Edwin A.; Jones, Iris K.A.; Mosesso, Richard A.; Noureddine, Achraf; Techel, Jessica L.; Gomez, Andrew G.; Collette, Nicole; Sherman, Michael B.; Serda, Rita E.; Butler, Kimberly S.; Brinker, C.J.; Schoeniger, Joseph S.; Sasaki, Darryl; Negrete, Oscar N.

Emerging and re-emerging viral pathogens present a unique challenge for anti-viral therapeutic development. Anti-viral approaches with high flexibility and rapid production times are essential for combating these high-pandemic risk viruses. CRISPR-Cas technologies have been extensively repurposed to treat a variety of diseases, with recent work expanding into potential applications against viral infections. However, delivery still presents a major challenge for these technologies. Lipid-coated mesoporous silica nanoparticles (LCMSNs) offer an attractive delivery vehicle for a variety of cargos due to their high biocompatibility, tractable synthesis, and amenability to chemical functionalization. Here, we report the use of LCMSNs to deliver CRISPR-Cas9 ribonucleoproteins (RNPs) that target the Niemann–Pick disease type C1 gene, an essential host factor required for entry of the high-pandemic risk pathogen Ebola virus, demonstrating an efficient reduction in viral infection. We further highlight successful in vivo delivery of the RNP-LCMSN platform to the mouse liver via systemic administration.

More Details

The brain’s unique take on algorithms

Nature Communications

Aimone, James B.; Parekh, Ojas D.

Perspectives for understanding the brain vary across disciplines and this has challenged our ability to describe the brain’s functions. In this comment, we discuss how emerging theoretical computing frameworks that bridge top-down algorithm and bottom-up physics approaches may be ideally suited for guiding the development of neural computing technologies such as neuromorphic hardware and artificial intelligence. Furthermore, we discuss how this balanced perspective may be necessary to incorporate the neurobiological details that are critical for describing the neural computational disruptions within mental health and neurological disorders.

More Details

Synchronous micromechanically resonant programmable photonic circuits

Nature Communications

Leenheer, Andrew J.; Dominguez, Daniel; Eichenfield, Matt; Dong, Mark; Boyle, Julia M.; Palm, Kevin J.; Zimmermann, Matthew; Witte, Alex; Gilbert, Gerald; Englund, Dirk

Programmable photonic integrated circuits (PICs) are emerging as powerful tools for control of light, with applications in quantum information processing, optical range finding, and artificial intelligence. Low-power implementations of these PICs involve micromechanical structures driven capacitively or piezoelectrically but are often limited in modulation bandwidth by mechanical resonances and high operating voltages. Here we introduce a synchronous, micromechanically resonant design architecture for programmable PICs and a proof-of-principle 1×8 photonic switch using piezoelectric optical phase shifters. Our design purposefully exploits high-frequency mechanical resonances and optically broadband components for larger modulation responses on the order of the mechanical quality factor Q m while maintaining fast switching speeds. We experimentally show switching cycles of all 8 channels spaced by approximately 11 ns and operating at 4.6 dB average modulation enhancement. Future advances in micromechanical devices with high Qm, which can exceed 10000, should enable an improved series of low-voltage and high-speed programmable PICs.

More Details

Increased drought and extreme events over continental United States under high emissions scenario

Scientific Reports

Gautam, Sagar; Mishra, Umakant; Scown, Corinne D.; Ghimire, Rajan

The frequency, severity, and extent of climate extremes in future will have an impact on human well-being, ecosystems, and the effectiveness of emissions mitigation and carbon sequestration strategies. The specific objectives of this study were to downscale climate data for US weather stations and analyze future trends in meteorological drought and temperature extremes over continental United States (CONUS). We used data from 4161 weather stations across the CONUS to downscale future precipitation projections from three Earth System Models (ESMs) participating in the Coupled Model Intercomparison Project Phase Six (CMIP6), specifically for the high emission scenario SSP5 8.5. Comparing historic observations with climate model projections revealed a significant bias in total annual precipitation days and total precipitation amounts. The average number of annual precipitation days across CONUS was projected to be 205 ± 26, 184 ± 33, and 181 ± 25 days in the BCC, CanESM, and UKESM models, respectively, compared to 91 ± 24 days in the observed data. Analyzing the duration of drought periods in different ecoregions of CONUS showed an increase in the number of drought months in the future (2023–2052) compared to the historical period (1989–2018). The analysis of precipitation and temperature changes in various ecoregions of CONUS revealed an increased frequency of droughts in the future, along with longer durations of warm spells. Eastern temperate forests and the Great Plains, which encompass the majority of CONUS agricultural lands, are projected to experience higher drought counts in the future. Drought projections show an increasing trend in future drought occurrences due to rising temperatures and changes in precipitation patterns. Our high-resolution climate projections can inform policy makers about the hotspots and their anticipated future trajectories.

More Details

Predicting electronic structures at any length scale with machine learning

npj Computational Materials

Fiedler, Lenz; Modine, Normand A.; Schmerler, Steve; Vogel, Dayton J.; Popoola, Gabriel A.; Thompson, A.P.; Rajamanickam, Sivasankaran; Cangi, Attila

The properties of electrons in matter are of fundamental importance. They give rise to virtually all material properties and determine the physics at play in objects ranging from semiconductor devices to the interior of giant gas planets. Modeling and simulation of such diverse applications rely primarily on density functional theory (DFT), which has become the principal method for predicting the electronic structure of matter. While DFT calculations have proven to be very useful, their computational scaling limits them to small systems. We have developed a machine learning framework for predicting the electronic structure on any length scale. It shows up to three orders of magnitude speedup on systems where DFT is tractable and, more importantly, enables predictions on scales where DFT calculations are infeasible. Our work demonstrates how machine learning circumvents a long-standing computational bottleneck and advances materials science to frontiers intractable with any current solutions.

More Details

Characterizing dynamic test fixtures through the modal projection error

Mechanical Systems and Signal Processing

Rouse, Jerry W.

Across many industries and engineering disciplines, systems of components are designed and deployed into their operational environments. It is the desire of the engineer to be able to predict if the component or system will survive its operational environment or if the component will fail due to mechanical stresses. One method to determine if the component will survive the operational environment is to expose the component to a simulation of the environment in a laboratory. One difficulty in executing such a test is that the component may not have the same boundary condition in both the laboratory and operational configurations. This paper presents a novel method of quantifying the error in the modal domain that occurs from the impedance difference between the laboratory test fixture and the operational configuration. The error is calculated from the projection from one mode shape space to the other, and the error is in terms of each mode of the operational configuration. The error provides insight into the effectiveness of the test fixture with respect to the ability to recreate the individual mode shapes of the operational configuration. A case study is presented to show the error in the modal projection between two configurations is a lower limit for the error that can be achieved by a laboratory test.

More Details

Fast cycling of “anode-less”, redox-mediated Li-S flow batteries

Journal of Energy Storage

Foulk, James W.; Maraschky, Adam M.; Watt, John; Small, Leo J.

Redox flow batteries (RFBs) that incorporate solid energy-storing materials are attractive for high-capacity grid-scale energy storage due to their markedly higher theoretical energy densities compared to their fully liquid counterparts. However, this promise of higher energy density comes at the expense of rate capability. In this work we exploit a ZnO nanorod-decorated Ni foam scaffold to create a high surface area Li metal anode capable of rates up to 10 mA cm−2, a 10× improvement over traditional planar designs. The ZnO nanorods enhance Li metal wettability and promote uniform Li nucleation, allowing the RFB to be initially operated with a prelithiated (charged) anode, or with a safety-conscious, Li-less, fully discharged anode. 5 mgS cm−1 were cycled using a mediated S cathode, whereby redox mediators help oxidize and reduce solid S particles. At 2.4 mgS cm−2 and 10 mA cm−2, the RFB becomes limited by the mediation of solid S. Nevertheless, a respectable energy density of 20.3 Wh L−1 is demonstrated, allowing considerable increase if the S mediation rate can be further improved. Lessons learned here may be broadly applied to RFBs with alkali metal anodes, offering an avenue for safe, dense, grid-scale energy storage.

More Details

Critical Role of Water for Energy Transitions Technologies: A Literature Review

Gunda, Thushara; Valdez, Raquel; Houck, Daniel R.; Linville, Lisa

This report summarizes the water inputs associated with four technologies playing diverse roles in energy transitions: hydrogen, solar photovoltaics (PV), wind, and batteries. Information in this report is drawn from multiple sources, including peer-reviewed literature, industry and international agency reports, EcoInvent life cycle inventory database, and subject matter expert (SME) consultations. Where possible, insights that characterized water requirements for specific stages of the technology development (e.g., operations, manufacturing, and mining) were prioritized over broader cradle-to-gate assessment values. Furthermore, both direct and indirect water requirements (i.e., associated with associated energy inputs) were considered in this literature review.

More Details

Reading Between the Lines: Measuring the Effects of Linguistic-Based Indicators of Deception on Experts’ Identification and Categorization of Disinformation

Windsor, Matthew B.; Dickson, Danielle S.; Emery, Benjamin F.; Gunda, Thushara

There is currently very limited research into how experts analyze and assess potentially fraudulent content in their expertise areas, and most research within the disinformation space involves very limited text samples (e.g., news headlines). The overarching goal of the present study was to explore how an individual’s psychological profile and the linguistic features in text might influence an expert’s ability to discern disinformation/fraudulent content in academic journal articles. At a high level, the current design tasked experts with reading journal articles from their area of expertise and indicating if they thought an article was deceptive or not. Half the articles they read were journal papers that had been retracted due to academic fraud. Demographic and psychological inventory data collected on the participants was combined with performance data to generate insights about individual expert susceptibility to deception. Our data show that our population of experts were unable to reliably detect deception in formal technical writing. Several psychological dimensions such as comfort with uncertainty and intellectual humility may provide some protection against deception. This work informs our understanding of expert susceptibility to potentially fraudulent content within official, technical information and can be used to inform future mitigative efforts and provide a building block for future disinformation work.

More Details

Strategic Petroleum Reserve Enhanced Monitoring Compendium (FY23)

Moriarty, Dylan M.

The Strategic Petroleum Reserve (SPR) is the world’s largest supply of emergency crude oil. The reserve consists of four sites in Louisiana and Texas. Each site stores crude in deep, underground salt caverns. It is the mission of the SPR’s Enhanced Monitoring Program to examine available sensing data to inform our understanding of each site. This report discusses the monitoring data, processes, and results for each of the four sites for fiscal year 2023.

More Details

Downhole Sensing and Event-Driven Sensor Fusion for Depth-of-Cut Based Autonomous Fault Response and Drilling Optimization

Boots, Byron; Sacks, Jacob; Choi, Kevin; Greenhill, Kathryn; Mazumdar, Anirban; Buerger, Stephen P.; Su, Jiann-Cherng

Achieving robust and efficient drilling is a critical part of reducing the cost of geothermal energy exploration and extraction. Drilling performance is often evaluated using one or more of three key metrics: depth of cut (DOC), rate of penetration (ROP), and mechanical specific energy (MSE). All three of these quantities are related to each other. DOC refers to the depth a bit penetrates into rock during drilling. This is an important quantity for estimating bit behavior. ROP is the simply the DOC multiplied by the rotational rate, and represents how quickly the drill bit is advancing through the ground. ROP is often the parameter used for drilling control and optimization. Finally, MSE provides insight into drilling efficiency and rock type. MSE calculations rely on ROP, drilling force, and drilling torque. Surface-based sensors at the top of the drill are often used to measure all these quantities. However, top-hole measurements can deviate substantially from the behavior at the bit due to lag, vibrations, and friction. Therefore, relying only on top-hole information can lead to suboptimal drilling control. In this work, we describe recent progress towards estimating ROP, DOC, and MSE using down-hole sensing. We assume down-hole measurements of torque, weight-on-bit (WOB). Our hypothesis is that these measurements can provide more rapid and accurate measures of drilling performance. We show how a multi-layer perceptron (MLP) machine learning algorithm can provide rapid and accurate performance when evaluated on experimental data taken from Sandia’s Hard Rock Drilling Facility. In addition, we implement our algorithms on an embedded system intended to emulate a bottom-hole-assembly for sensing and estimation. Our experimental results show that DOC can be estimated accurately and in real-time. These estimates when combined with measurements for rotary speed, torque, and force can provide improved estimates for ROP and MSE. These results have the potential to enable better drilling assessment, improved control, and extended component lifetimes.

More Details

The Model Assessment Wizard (MAW): A Visualization System for Ontology Constraint Violations

Gray, Kathryn; Murdock, Jaimie M.; Carroll, Edward R.

Validation and verification of engineering models is important to understand potential weaknesses and issues in the model. This is accomplished through the application of constraint logic to the model. These models and the constraints put upon them can be represented through a graph structure. Here we give a visualization system to aid users understanding, locating, and fixing constraint violations in their systems. We give users several ways to narrow down on the specific errors and parts of the graph they’re interested in. Users have the opportunity to choose the types of errors that will be shown in the graph. Clustering is applied to the graph to help users narrow down their searches. Several other graph interactions are given to support discovery of constraint violations.

More Details

Confidence Calibration Metrics

Hagopian, Kaylin; Plackowski, Nikki L.; Todd, Alyssa; Richards, John A.

This technical report serves to summarize a literature search conducted that covered confidence calibration. This report is meant to serve as a solid starting reference for individuals interested in learning more about the confidence calibration domain as well as for individuals more familiar with this work – as a summarizing document for calibration metrics is notably lacking in the literature. This report is not meant to serve as a comprehensive review of everything that has been done in this field – in fact, the reader is encouraged to look further into this domain. We describe confidence and calibration and discuss properties of good calibration metrics. We detail various calibration and calibration-tangential metrics, presenting equations, algorithms, parameters, and an analysis of strengths and weaknesses. We apply a subset of these metrics to eight proxy confidence assessment datasets. We examine the various metrics in the context of model confidence. Finally, we discuss promising future directions and outstanding questions.

More Details

DECOVALEX-2023: Task F2-Salt Final Report

Laforce, Tara C.; Bartol, Jeroen; Becker, Dirk-Alexander; Benbow, Steven; Bond, Alexander; Dietl, Carlo R.; Frank, Tanja; Jayne, Richard; Kock, Ingo; Magri, Fabiano; Nicholas, Josh; Pekala, Marek; Stauffer, Philip H.; Stein, Emily; Stone, Jodie; Wolf, Jens

The subject of Task F of DECOVALEX-2023 concerns performance assessment modelling of radioactive waste disposal in deep mined repositories. The primary objectives of Task F are to build confidence in the models, methods, and software used for performance assessment (PA) of deep geologic nuclear waste repositories, and/or to bring to the fore additional research and development needed to improve PA methodologies. In Task F2-(salt), these objectives have been accomplished through staged development and comparison of the models and methods used by participating teams in their PA frameworks. Coupled-process submodels and deterministic simulations of the entire PA model for a reference scenario for waste disposal in domal salt have been conducted. The task specification has been updated continuously since the initiation of the project to reflect the staged development of the conceptual repository model and performance metrics.

More Details

PR100: Estimated Medium- and Heavy-Duty Electric Vehicle Adoption and Load Estimation in Puerto Rico through 2050

Garrett, Richard A.; Moog, Emily; Mammoli, Andrea A.; Lave, Matt

The 2-year Puerto Rico Grid Resilience and Transition to 100% Renewable Energy Study analyzed stakeholder-driven pathways to Puerto Rico’s clean energy future. Outputs relating to electricity demand modeling were partially informed by estimates of electric vehicle adoption across all classes of medium- and heavy-duty vehicles (MHDVs), and the ensuing charging loads. To create these estimates, the team developed a transportation model for MHDVs in Puerto Rico to estimate the amount and geospatial distribution of energy used. Charging schedules for the different end uses of MHDVs were then used to construct electric load shapes assuming a portion of those vehicles would be replaced by battery electric counterparts. Study results showed that, by 2050, electric vehicles may constitute roughly 50% of the MHDV population in Puerto Rico. The resulting electrical demand curve attributable to MHDV charging showed that, for solar energy-based electrical systems with limited energy storage, this demand may create challenges unless appropriately managed either on the demand or supply side.

More Details

Theory and Implementation of the Spectacular Nonlinear Viscoelastic Constitutive Model

Cundiff, K.N.; Buche, Michael R.; Talamini, Brandon; Grutzik, S.J.; Kropka, Jamie M.; Long, Kevin N.

This report is a comprehensive guide to the nonlinear viscoelastic Spectacular model, which is an isotropic, thermo-rheologically simple constitutive model for glass-forming materials, such as amorphous polymers. Spectacular is intermediate in complexity to the previous PEC and SPEC models (Potential Energy Clock and Simplified Potential Energy Clock models, respectively). The model form consists of two parts: a Helmholtz free energy functional and a nonlinear material clock that controls the rate of viscoelastic relaxation. The Helmholtz free energy is derived from a series expansion about a reference state. Expressions for the stress and entropy functionals are derived from the Helmholtz free energy following the Rational Mechanics approach. The material clock depends on a simplified expression for the potential energy, which itself is a functional of the temperature and strain histories. This report describes the thermo-mechanical theory of Spectacular, the numerical methods for time-integrating the model, model verification for its implementation in LAMÉ, a user guide for its implementation in LAMÉ, and ideas for future work. A number of appendices provide supplementary mathematical details and a description of the procedure used to derive the simplified potential energy from the full expression for the potential energy. The goal of this report is create a convenient point-of-entry for engineers who wish to learn more about Spectacular, but also to serve as a reference manual for advanced users of the model.

More Details
Results 1551–1575 of 99,299
Results 1551–1575 of 99,299