The rotating bending fatigue (RBF) behavior (fully reversed, R = −1) of additively manufactured (AM) Ti–6Al–4V alloy produced via laser powder bed fusion (PBF-L) was investigated with respect to different microstructures achieved through novel heat treatments. The investigation herein seeks to elucidate the effect of microstructure by controlling variables that can affect fatigue behavior in Ti–6Al–4V, such as chemistry, porosity, and surface roughness. In order to control these variables, different hot isostatic pressing (HIP) treatments at 800 °C, 920 °C, and 1050 °C with a 920 °C temper were applied to three sets of Ti–6Al–4V cylinders that originated from the same PBF-L build, such that there were 30 tests per condition. After HIP treatment, the specimens were machined and tested. The highest runout stress was achieved after sub-β transus HIP at 800 °C for 2 h at 200 MPa of pressure. A significant drop in fatigue strength was attributed to large prior-β grains and grain boundary α resulting from super-β transus HIP treated specimens. For the sub-β transus HIP specimens, differences in fatigue strength were attributed to α lath thickness, relative dislocation density, and dislocation boundary strengthening.
The critical stress for cutting of a void and He bubble (generically referred to as a cavity) by edge and screw dislocations has been determined for FCC Fe0.70Cr0.20Ni0.10—close to 300-series stainless steel—over a range of cavity spacings, diameters, pressures, and glide plane positions. The results exhibit anomalous trends with spacing, diameter, and pressure when compared with classical theories for obstacle hardening. These anomalies are attributed to elastic anisotropy and the wide extended dislocation core in low stacking fault energy metals, indicating that caution must be exercised when using perfect dislocations in isotropic solids to study void and bubble hardening. In many simulations with screw dislocations, cross-slip was observed at the void/bubble surface, leading to an additional contribution to strengthening. We refer to this phenomenon as cavity cross-slip locking, and argue that it may be an important contributor to void and bubble hardening.
In magnetized liner inertial fusion (MagLIF), a cylindrical liner filled with fusion fuel is imploded with the goal of producing a one-dimensional plasma column at thermonuclear conditions. However, structures attributed to three-dimensional effects are observed in self-emission x-ray images. Despite this, the impact of many experimental inputs on the column morphology has not been characterized. We demonstrate the use of a linear regression analysis to explore correlations between morphology and a wide variety of experimental inputs across 57 MagLIF experiments. Results indicate the possibility of several unexplored effects. For example, we demonstrate that increasing the initial magnetic field correlates with improved stability. Although intuitively expected, this has never been quantitatively assessed in integrated MagLIF experiments. We also demonstrate that azimuthal drive asymmetries resulting from the geometry of the “current return can” appear to measurably impact the morphology. In conjunction with several counterintuitive null results, we expect the observed correlations will encourage further experimental, theoretical, and simulation-based studies. Finally, we note that the method used in this work is general and may be applied to explore not only correlations between input conditions and morphology but also with other experimentally measured quantities.
The rise of grid modernization has been prompted by the escalating demand for power, the deteriorating state of infrastructure, and the growing concern regarding the reliability of electric utilities. The smart grid encompasses recent advancements in electronics, technology, telecommunications, and computer capabilities. Smart grid telecommunication frameworks provide bidirectional communication to facilitate grid operations. Software-defined networking (SDN) is a proposed approach for monitoring and regulating telecommunication networks, which allows for enhanced visibility, control, and security in smart grid systems. Nevertheless, the integration of telecommunications infrastructure exposes smart grid networks to potential cyberattacks. Unauthorized individuals may exploit unauthorized access to intercept communications, introduce fabricated data into system measurements, overwhelm communication channels with false data packets, or attack centralized controllers to disable network control. An ongoing, thorough examination of cyber attacks and protection strategies for smart grid networks is essential due to the ever-changing nature of these threats. Previous surveys on smart grid security lack modern methodologies and, to the best of our knowledge, most, if not all, focus on only one sort of attack or protection. This survey examines the most recent security techniques, simultaneous multi-pronged cyber attacks, and defense utilities in order to address the challenges of future SDN smart grid research. The objective is to identify future research requirements, describe the existing security challenges, and highlight emerging threats and their potential impact on the deployment of software-defined smart grid (SD-SG).
Foulk, James W.; Davis, Jacob; Tom, Nathan; Thiagarajan, Krish
This study presents theoretical formulations to evaluate the fundamental parameters and performance characteristics of a bottom-raised oscillating surge wave energy converter (OSWEC) device. Employing a flat plate assumption and potential flow formulation in elliptical coordinates, closed-form equations for the added mass, radiation damping, and excitation forces/torques in the relevant pitch-pitch and surge-pitch directions of motion are developed and used to calculate the system's response amplitude operator and the forces and moments acting on the foundation. The model is benchmarked against numerical simulations using WAMIT and WEC-Sim, showcasing excellent agreement. The sensitivity of plate thickness on the analytical hydrodynamic solutions is investigated over several thickness-to-width ratios ranging from 1:80 to 1:10. The results show that as the thickness of the benchmark OSWEC increases, the deviation of the analytical hydrodynamic coefficients from the numerical solutions grows from 3 % to 25 %. Differences in the excitation forces and torques, however, are contained within 12 %. While the flat plate assumption is a limitation of the proposed analytical model, the error is within a reasonable margin for use in the design space exploration phase before a higher-fidelity (and thus more computationally expensive) model is employed. A parametric study demonstrates the ability of the analytical model to quickly sweep over a domain of OSWEC dimensions, illustrating the analytical model's utility in the early phases of design.
Nuclear power plant (NPP) risk assessment is broadly separated into disciplines of nuclear safety, security, and safeguards. Different analysis methods and computer models have been constructed to analyze each of these as separate disciplines. However, due to the complexity of NPP systems, there are risks that can span all these disciplines and require consideration of safety-security (2S) interactions which allows a more complete understanding of the relationship among these risks. A novel leading simulator/trailing simulator (LS/TS) method is introduced to integrate multiple generic safety and security computer models into a single, holistic 2S analysis. A case study is performed using this novel method to determine its effectiveness. The case study shows that the LS/TS method avoided introducing errors in simulation, compared to the same scenario performed without the LS/TS method. A second case study is then used to illustrate an integrated 2S analysis which shows that different levels of damage to vital equipment from sabotage at a NPP can affect accident evolution by several hours.