Publications

Results 4951–5000 of 99,299

Search results

Jump to search filters

A Liquid Stratification Model to Predict Failure in Thermally Damaged EBW Detonators

Propellants, Explosives, Pyrotechnics

Hobbs, Michael L.; Coronel, Stephanie A.

In previous work, commercially available downward facing exploding bridgewire detonators (EBWs) were exposed to elevated temperatures. These detonators were then initiated using a firing set which discharged a high amplitude short duration electrical pulse into a thin gold bridgewire. Responses of the detonators were measured using photonic doppler velocimetry (PDV) and high-speed photography. A time delay of 2 μs between EBW initiation and first movement of an output flyer separated operable detonators from inoperable detonators or duds. In the current work, we propose a simple method to determine detonator operability from the calculated state of the detonator at the time the firing set is initiated. The failure criterion is based on the gap distance between the exploding bridgewire (EBW) and the adjacent initiating explosive within the detonator which is low-density pentaerythritol tetranitrate (PETN) that melts between 413–415 K (140–142 °C). The gap forms as PETN melts and flows to the bottom of the input pellet. Melting of PETN is modeled thermodynamically as an energy sink using a normal distribution spread over a temperature range between the onset temperature of 413 K and the ending temperature of 415 K. The extent of the melt is determined from the average temperature of the PETN. The PETN liquid is assumed to occupy the interstitial gas volume in the lower part of the input pellet. The vacated volume from the relocated liquid forms the gap between the EBW and the PETN. The remaining sandwiched layer consists of solid PETN particles and gas filling interstitial volume. We predict that a threshold gap between 17–27 μm separates properly functioning detonators from duds.

More Details

Reconfiguration of the Respiratory Tract Microbiome to Prevent and Treat Burkholderia Infection

Branda, Steven; Collette, Nicole; Aiosa, Nicole; Garg, Neha; Mageeney, Catherine M.; Williams, Kelly P.; Phillips, Ashlee; Hern, Kelsey; Arkin, Adam; Ricken, Bryce; Wilde, Delaney; Dogra, Sahiba; Humphrey, Brittany; Poorey, Kunal; Courtney, Colleen

New approaches to preventing and treating infections, particularly of the respiratory tract, are needed. One promising strategy is to reconfigure microbial communities (microbiomes) within the host to improve defense against pathogens. Probiotics and prebiotics for gastrointestinal (GI) infections offer a template for success. We sought to develop comparable countermeasures for respiratory infections. First, we characterized interactions between the airway microbiome and a biodefense-related respiratory pathogen (Burkholderia thailandensis; Bt), using a mouse model of infection. Then, we recovered microbiome constituents from the airway and assessed their ability to re-colonize the airway and protect against respiratory Bt infection. We found that microbiome constituents belonging to Bacillus and related genuses frequently displayed colonization and anti-Bt activity. Comparative growth requirement profiling of these Bacillus strains vs Bt enabled identification of candidate prebiotics. This work serves as proof of concept for airway probiotics, as well as a strong foundation for development of airway prebiotics.

More Details

High-Sensitivity rf Detection Using an Optically Pumped Comagnetometer Based on Natural-Abundance Rubidium with Active Ambient-Field Cancellation

Physical Review Applied

Bainbridge, Jonathan E.; Claussen, Neil; Iivanainen, Joonas; Schwindt, Peter D.

To detect a specific radio-frequency (rf) magnetic field, rf optically pumped magnetometers (OPMs) require a static magnetic field to set the Larmor frequency of the atoms equal to the frequency of interest. However, unshielded and variable magnetic field environments (e.g., an rf OPM on a moving platform) pose a problem for rf OPM operation. Here, we demonstrate the use of a natural-abundance rubidium vapor to make a comagnetometer to address this challenge. Our implementation builds upon the simultaneous application of several OPM techniques within the same vapor cell. First, we use a modified implementation of an OPM variometer based on 87Rb to detect and actively cancel unwanted external fields at frequencies 60Hz using active feedback to a set of field control coils. We exploit this stabilized field environment to implement a high-sensitivity rf magnetometer using 85Rb. Using this approach, we demonstrate the ability to measure rf fields with a sensitivity of approximately 9fTHz-1/2 inside a magnetic shield in the presence of an applied field of approximately 20μT along three mutually orthogonal directions. This demonstration opens up a path toward completely unshielded operation of a high-sensitivity rf OPM.

More Details

Combined thermographic phosphor and digital image correlation (TP + DIC) for simultaneous temperature and strain measurements

Strain

Jones, E.M.C.; Jones, A.R.; Winters, C.

Thermographic phosphors (TP) are combined with stereo digital image correlation (DIC) in a novel diagnostic, TP + DIC, to measure full-field surface strains and temperatures simultaneously. The TP + DIC method is presented, including corrections for nonlinear CMOS camera detectors and generation of pixel-wise calibration curves to relate the known temperature to the ratio of pixel intensities between two distinct wavelength bands. Additionally, DIC is employed not only for strain measurements but also for accurate image registration between the two cameras for the two-colour ratio method approach of phosphoric thermography. TP + DIC is applied to characterize the thermo-mechanical response of 304L stainless steel dog bones during tensile testing at different strain rates. The dog bones are patterned for DIC with Mg3F2GeO4:Mn (MFG) via aerosol deposition through a shadow mask. Temperatures up to 425°K (150°C) and strains up to 1.0 mm/mm are measured in the localized necking region, with conservative noise levels of 10°K and 0.01 mm/mm or less. Finally, TP + DIC is compared to the more established method of combining infrared (IR) thermography with DIC (IR + DIC), with results agreeing favourably. Three topics of continued research are identified, including cracking of the aerosol-deposited phosphor DIC features, incomplete illumination for pixels on the border of the phosphor features, and phosphor emission evolution as a function of applied substrate strain. This work demonstrates the combination of phosphor thermography and DIC and lays the foundation for further development of TP + DIC for testing in combined thermo-mechancial environments.

More Details
Results 4951–5000 of 99,299
Results 4951–5000 of 99,299