Publications

Results 26–50 of 87

Search results

Jump to search filters

Design of wearable binoculars with on-demand zoom

Proceedings of SPIE - The International Society for Optical Engineering

Boye, Robert; Wolfley, Steven; Yelton, W.G.; Goeke, Ronald S.; Hunt, Jeffery P.; Ison, Aaron; Jared, Bradley H.; Pillars, Jamin R.; Saavedra, Michael P.; Sweatt, W.C.; Winrow, Edward G.

Sandia has developed an optical design for wearable binoculars utilizing freeform surfaces and switchable mirrors. The goals of the effort included a design lightweight enough to be worn by the user while providing a useful field of view and magnification as well as non-mechanical switching between normal and zoomed vision. Sandia's approach is a four mirror, off-axis system taking advantage of the weight savings and chromatic performance of a reflective system. The system incorporates an electrochromic mirror on the final surface before the eye allowing the user to switch between viewing modes. Results from a prototype of a monocular version with 6.6x magnification will be presented. The individual mirrors, including three off-axis aspheres and one true freeform, were fabricated using a diamond-turning based process. A slow-slide servo process was used for the freeform element. Surface roughness and form measurement of the freeform mirror will be presented as well as the expected impact on performance. The alignment and assembly procedure will be reviewed as well as the measured optical performance of the prototype. In parallel to the optical design work, development of an electrochromic mirror has provided a working device with faster switching than current state of the art. Switchable absorbers have been demonstrated with switching times less than 0.5 seconds. The deposition process and characterization of these devices will be presented. Finally, details of an updated optical design with additional freeform surfaces will be presented as well as plans for integrating the electrochromic mirror into the system. © 2013 SPIE.

More Details

Morphology and growth kinetics of straight and kinked Tin whiskers

Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science

Michael, Joseph R.; Grant, Richard P.; Mckenzie, Bonnie; Yelton, W.G.

Time-lapse SEM studies of Sn whiskers were conducted to estimate growth kinetics and document whisker morphologies. For straight whiskers, growth rates of 3 to 4 microns per day were measured at room temperature. Two types of kinked whiskers were observed. For Type A kinks, the original growth segment spatial orientation remains unchanged, there are no other changes in morphology or diameter, and growth continues. For Type B kinks, the spatial orientation of the original segment changes and it appears that the whisker bends over. Whiskers with Type B kinks show changes in morphology and diameter at the base, indicating grain boundary motion in the film, which eliminates the conditions suitable for long-term whisker growth. To estimate the errors in the whisker growth measurements, a technique is presented to correct for SEM projection effects. With this technique, the actual growth angles and lengths of a large number of whiskers were collected. It was found that most whiskers grow at moderate or shallow angles with respect to the surface; few straight whiskers grow nearly normal to the surface. In addition, there is no simple correlation between growth angles and lengths for whiskers observed over an approximate 2-year period. © 2012 The Minerals, Metals & Materials Society and ASM International (outside the USA).

More Details

Understanding and Predicting Metallic Whisker Growth and its Effects on Reliability (LDRD Final Report)

Michael, Joseph R.; Mckenzie, Bonnie; Grant, Richard P.; Yelton, W.G.; Pillars, Jamin R.; Rodriguez, Mark A.

Tin (Sn) whiskers are conductive Sn filaments that grow from Sn-plated surfaces, such as surface finishes on electronic packages. The phenomenon of Sn whiskering has become a concern in recent years due to requirements for lead (Pb)-free soldering and surface finishes in commercial electronics. Pure Sn finishes are more prone to whisker growth than their Sn-Pb counterparts and high profile failures due to whisker formation (causing short circuits) in space applications have been documented. At Sandia, Sn whiskers are of interest due to increased use of Pb-free commercial off-the-shelf (COTS) parts and possible future requirements for Pb-free solders and surface finishes in high-reliability microelectronics. Lead-free solders and surface finishes are currently being used or considered for several Sandia applications. Despite the long history of Sn whisker research and the recently renewed interest in this topic, a comprehensive understanding of whisker growth remains elusive. This report describes recent research on characterization of Sn whiskers with the aim of understanding the underlying whisker growth mechanism(s). The report is divided into four sections and an Appendix. In Section 1, the Sn plating process is summarized. Specifically, the Sn plating parameters that were successful in producing samples with whiskers will be reviewed. In Section 2, the scanning electron microscopy (SEM) of Sn whiskers and time-lapse SEM studies of whisker growth will be discussed. This discussion includes the characterization of straight as well as kinked whiskers. In Section 3, a detailed discussion is given of SEM/EBSD (electron backscatter diffraction) techniques developed to determine the crystallography of Sn whiskers. In Section 4, these SEM/EBSD methods are employed to determine the crystallography of Sn whiskers, with a statistically significant number of whiskers analyzed. This is the largest study of Sn whisker crystallography ever reported. This section includes a review of previous literature on Sn whisker crystallography. The overall texture of the Sn films was also analyzed by EBSD. Finally, a short Appendix is included at the end of this report, in which the X-Ray diffraction (XRD) results are discussed and compared to the EBSD analyses of the overall textures of the Sn films. Sections 2, 3, and 4 have been or will be submitted as stand-alone papers in peer-reviewed technical journals. A bibliography of recent Sandia Sn whisker publications and presentations is included at the end of the report.

More Details
Results 26–50 of 87
Results 26–50 of 87