Chemical Warfare Agent Detection Using Zirconium Metal-Organic Framework Functionalized Plasmonic Sensors
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The DOE R&D program under the Spent Fuel Waste Science Technology (SFWST) campaign has made key progress in modeling and experimental approaches towards the characterization of chemical and physical phenomena that could impact the long-term safety assessment of heat-generating nuclear waste disposition in deep clay/shale/argillaceous rock. International collaboration activities such as heater tests and postmortem analysis of samples recovered from these have elucidated key information regarding changes in the engineered barrier system (EBS) material exposed to years of thermal loads. Chemical and structural analyses of sampled bentonite material from such tests has as well as experiments conducted on these are key to the characterization of thermal effects affecting bentonite clay barrier performance and the extent of sacrificial zones in the EBS during the thermal period. Thermal, hydrologic, and chemical data collected from heater tests and laboratory experiments has been used in the development, validation, and calibration of THMC simulators to model near-field coupled processes. This information leads to the development of simulation approaches (e.g., continuum vs. discrete) to tackle issues related to flow and transport at various scales of the host-rock and EBS design concept. Consideration of direct disposal of large capacity dual-purpose canisters (DPCs) as part of the back-end SNF waste disposition strategy has generated interest in improving our understanding of the effects of elevated temperatures on the EBS design. This is particularly important for backfilled repository concepts where temperature plays a key role in the EBS behavior and long-term performance. This report describes multiple R&D efforts on disposal in argillaceous geologic media through development and application of coupled THMC process models, experimental studies on clay/metal/cement barrier and host-rock (argillite) material interactions, molecular dynamic (MD) simulations of water transport during (swelling) clay dehydration, first-principles studies of metaschoepite (UO2 corrosion product) stability, and advances in thermodynamic plus surface complexation database development. Drift-scale URL experiments provides key data for testing hydrological-chemical (HC) model involving strong couplings of fluid mixing and barrier material chemical interactions. The THM modeling focuses on heater test experiments in argillite rock and gas migration in bentonite as part of international collaboration activities at underground research laboratories (URLs). In addition, field testing at an URL involves in situ analysis of fault slip behavior and fault permeability. Pore-scale modeling of gas bubble migration is also being investigated within the gas migration modeling effort. Interaction experiments on bentonite samples from heater test under ambient and elevated temperatures permit the evaluation of ion exchange, phase stability, and mineral transformation changes that could impact clay swelling. Advances in the development, testing, and implementation of a spent nuclear fuel (SNF) degradation model coupled with canister corrosion focus on the effects of hydrogen gas generation and its integration with Geologic Disposal Safety Assessment (GDSA). GDSA integration activities includes evaluation of groundwater chemistries in shale formations.
Abstract not provided.
Physical Review Research
Majorana zero modes (MZMs), fundamental building blocks for realizing topological quantum computers, can appear at the interface between a superconductor and a topological material. One of the experimental signatures that has been widely pursued to confirm the existence of MZMs is the observation of a large, quantized zero-bias conductance peak (ZBCP) in the differential conductance measurements. In this Letter, we report observation of such a large ZBCP in junction structures of normal metal (titanium/gold Ti/Au)-Dirac semimetal (cadmium-arsenide Cd3As2)-conventional superconductor (aluminum Al), with a value close to four times that of the normal state conductance. Our detailed analyses suggest that this large ZBCP is most likely not caused by MZMs. We attribute the ZBCP, instead, to the existence of a supercurrent between two far-separated superconducting Al electrodes, which shows up as a zero-bias peak because of the circuitry and thermal fluctuations of the supercurrent phase, a mechanism conceived by Ivanchenko and Zil'berman more than 50 years ago [Ivanchenko and Zil'berman, JETP 28, 1272 (1969)]. Our results thus call for extreme caution when assigning the origin of a large ZBCP to MZMs in a multiterminal semiconductor or topological insulator/semimetal setup. We thus provide criteria for identifying when the ZBCP is definitely not caused by an MZM. Furthermore, we present several remarkable experimental results of a supercurrent effect occurring over unusually long distances and clean perfect Andreev reflection features.
Abstract not provided.
Abstract not provided.
Powder Diffraction
Residual strain in electrodeposited Li films may affect safety and performance in Li metal battery anodes, so it is important to understand how to detect residual strain in electrodeposited Li and the conditions under which it arises. To explore this Li films, electrodeposited onto Cu metal substrates, were prepared under an applied pressure of either 10 or 1000 kPa and subsequently tested for the presence or absence of residual strain via sin(ψ) analysis. X-ray diffraction (XRD) analysis of Li films required preparation and examination within an inert environment; hence, a Be-dome sample holder was employed during XRD characterization. Results show that the Li film grown under 1000 kPa displayed a detectable presence of in-plane compressive strain (-0.066%), whereas the Li film grown under 10 kPa displayed no detectable in-plane strain. The underlying Cu substrate revealed an in-plane residual strain near zero. Texture analysis via pole figure determination was also performed for both Li and Cu and revealed a mild fiber texture for Li metal and a strong bi-axial texture of the Cu substrate. Experimental details concerning sample preparation, alignment, and analysis of the particularly air-sensitive Li films have also been detailed. This work shows that Li metal exhibits residual strain when electrodeposited under compressive stress and that XRD can be used to quantify that strain.
ACS Applied Materials and Interfaces
A novel metal-organic framework (MOF), Mn-DOBDC, has been synthesized in an effort to investigate the role of both the metal center and presence of free linker hydroxyls on the luminescent properties of DOBDC (2,5-dihydroxyterephthalic acid) containing MOFs. Co-MOF-74, RE-DOBDC (RE-Eu and Tb), and Mn-DOBDC have been synthesized and analyzed by powder X-ray diffraction (PXRD) and the fluorescent properties probed by UV-Vis spectroscopy and density functional theory (DFT). Mn-DOBDC has been synthesized by a new method involving a concurrent facile reflux synthesis and slow crystallization, resulting in yellow single crystals in monoclinic space group C2/c. Mn-DOBDC was further analyzed by single-crystal X-ray diffraction (SCXRD), scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS), and photoluminescent emission. Results indicate that the luminescent properties of the DOBDC linker are transferred to the three-dimensional structures of both the RE-DOBDC and Mn-DOBDC, which contain free hydroxyls on the linker. In Co-MOF-74 however, luminescence is quenched in the solid state due to binding of the phenolic hydroxyls within the MOF structure. Mn-DOBDC exhibits a ligand-based tunable emission that can be controlled in solution by the use of different solvents.
Journal of Materials Chemistry A
Development of calcium metal batteries has been historically frustrated by a lack of electrolytes capable of supporting reversible calcium electrodeposition. In this paper, we report the study of an electrolyte consisting of Ca(BH4)2 in tetrahydrofuran (THF) to gain important insight into the role of the liquid solvation environment in facilitating the reversible electrodeposition of this highly reactive, divalent metal. Through interrogation of the Ca2+ solvation environment and comparison with Mg2+ analogs, we show that an ability to reversibly electrodeposit metal at reasonable rates is strongly regulated by dication charge density and polarizability. Our results indicate that the greater polarizability of Ca2+ over Mg2+ confers greater configurational flexibility, enabling ionic cluster formation via neutral multimer intermediates. Increased concentration of the proposed electroactive species, CaBH4+, enables rapid and stable delivery of Ca2+ to the electrode interface. This work helps set the stage for future progress in the development of electrolytes for calcium and other divalent metal batteries.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.