Publications

Results 1–50 of 196

Search results

Jump to search filters

Hugoniot, sound speed, and phase transitions of single-crystal sapphire for pressures 0.2–2.1 TPa

Physical Review. B

McCoy, C.A.; Kalita, Patricia K.; Knudson, Marcus D.; Desjarlais, Michael P.; Duwal, Sakun D.; Root, Seth R.

Sapphire (Al2O3) is a major constituent of the Earth's mantle and has significant contributions to the field of high-pressure physics. Constraining its Hugoniot over a wide pressure range and identifying the location of shock-driven phase transitions allows for development of a multiphase equation of state and enables its use as an impedance-matching standard in shock physics experiments. In this paper we present measurements of the principal Hugoniot and sound velocity from direct impact experiments using magnetically launched flyers on the Z machine at Sandia National Laboratories. The Hugoniot was constrained for pressures from 0.2–2.1 TPa and a four-segment piecewise linear shock-velocity–particle-velocity fit was determined. First-principles molecular dynamics simulations were conducted and agree well with the experimental Hugoniot. Sound-speed measurements identified the onset of melt between 450 and 530 GPa, and the Hugoniot fit refined the onset to 525 ± 13 GPa. A phase diagram which incorporates literature diamond-anvil cell data and melting measurements is presented.

More Details

Hugoniot, sound speed, and phase transitions of single-crystal sapphire for pressures 0.2-2.1 TPa

Physical Review B

McCoy, C.A.; Laros, James H.; Knudson, Marcus D.; Desjarlais, Michael P.; Duwal, Sakun D.; Root, Seth R.

Sapphire (Al2O3) is a major constituent of the Earth's mantle and has significant contributions to the field of high-pressure physics. Constraining its Hugoniot over a wide pressure range and identifying the location of shock-driven phase transitions allows for development of a multiphase equation of state and enables its use as an impedance-matching standard in shock physics experiments. Here, we present measurements of the principal Hugoniot and sound velocity from direct impact experiments using magnetically launched flyers on the Z machine at Sandia National Laboratories. The Hugoniot was constrained for pressures from 0.2-2.1 TPa and a four-segment piecewise linear shock-velocity-particle-velocity fit was determined. First-principles molecular dynamics simulations were conducted and agree well with the experimental Hugoniot. Sound-speed measurements identified the onset of melt between 450 and 530 GPa, and the Hugoniot fit refined the onset to 525±13 GPa. A phase diagram which incorporates literature diamond-anvil cell data and melting measurements is presented.

More Details

Dynamic high pressure phase transformation of ZrW2O8

AIP Advances

Bishop, Sean R.; Lowry, Daniel R.; Peretti, Amanda S.; Laros, James H.; Knudson, Marcus D.; Sarracino, Alex; Mahaffey, Jacob T.; Murray, Shannon E.

Phase transformations under high strain rates (dynamic compression) are examined in situ on ZrW2O8, a negative thermal expansion ternary ceramic displaying polymorphism. Amorphization, consistent with prior quasi-static measurements, was observed at a peak pressure of 3.0 GPa under dynamic conditions, which approximate those expected during fabrication. Evidence of partial amorphization was observed at lower pressure (1.8 GPa) that may be kinetically restrained by the short (<∼150 ns) time scale of the applied high pressure. The impact of kinetics of pressure-induced amorphization from material fabrication methods is briefly discussed.

More Details

Ti-6Al-4V to over 1.2 TPa: Shock Hugoniot experiments, ab initio calculations, and a broad-range multiphase equation of state

Physical Review B

Laros, James H.; Cochrane, Kyle C.; Knudson, Marcus D.; Ao, Tommy A.; Blada, Caroline B.; Jackson, Jerry; Gluth, Jeffry; Hanshaw, Heath L.; Scoglietti, Edward; Crockett, Scott D.

Titanium alloys are used in a large array of applications. In this work we focus our attention on the most used alloy, Ti-6Al-4V (Ti64), which has excellent mechanical and biocompatibility properties with applications in aerospace, defense, biomedical, and other fields. Here we present high-fidelity experimental shock compression data measured on Sandia's Z machine. We extend the principal shock Hugoniot for Ti64 to more than threefold compression, up to over 1.2 TPa. We use the data to validate our ab initio molecular dynamics simulations and to develop a highly reliable, multiphase equation of state (EOS) for Ti64, spanning a broad range of temperature and pressures. The first-principles simulations show very good agreement with Z data and with previous three-stage gas gun data from Sandia's STAR facility. The resulting principal Hugoniot and the broad-range EOS and phase diagram up to 10 TPa and 105 K are suitable for use in shock experiments and in hydrodynamic simulations. The high-precision experimental results and high-fidelity simulations demonstrate that the Hugoniot of the Ti64 alloy is stiffer than that of pure Ti and reveal that Ti64 melts on the Hugoniot at a significantly lower pressure and temperature than previously modeled.

More Details

Shock compression of poly(methyl methacrylate) PMMA in the 1000 GPa regime: Z machine experiments

Journal of Applied Physics

Laros, James H.; Knudson, Marcus D.; Ao, Tommy A.; Blada, Caroline B.; Jackson, Jerry; Gluth, Jeffry; Hanshaw, Heath L.; Scoglietti, Edward

Hydrocarbon polymers are used in a wide variety of practical applications. In the field of dynamic compression at extreme pressures, these polymers are used at several high energy density (HED) experimental facilities. One of the most common polymers is poly(methyl methacrylate) or PMMA, also called Plexiglass® or Lucite®. Here, we present high-fidelity, hundreds of GPa range experimental shock compression data measured on Sandia's Z machine. We extend the principal shock Hugoniot for PMMA to more than threefold compression up to 650 GPa and re-shock Hugoniot states up to 1020 GPa in an off-Hugoniot regime, where experimental data are even sparser. These data can be used to put additional constraints on tabular equation of state (EOS) models. The present results provide clear evidence for the need to re-examine the existing tabular EOS models for PMMA above ∼120 GPa as well as perhaps revisit EOSs of similar hydrocarbon polymers commonly used in HED experiments investigating dynamic compression, hydrodynamics, or inertial confinement fusion.

More Details

LDRD 226360 Final Project Report: Simulated X-ray Diffraction and Machine Learning for Optimizing Dynamic Experiment Analysis

Ao, Tommy A.; Donohoe, Brendan D.; Martinez, Carianne M.; Knudson, Marcus D.; Montes de Oca Zapiain, David M.; Morgan, Dane; Rodriguez, Mark A.; Lane, James M.

This report is the final documentation for the one-year LDRD project 226360: Simulated X-ray Diffraction and Machine Learning for Optimizing Dynamic Experiment Analysis. As Sandia has successfully developed in-house X-ray diffraction tools for study of atomic structure in experiments, it has become increasingly important to develop computational analysis methods to support these experiments. When dynamically compressed lattices and orientations are not known a priori, the identification requires a cumbersome and sometimes intractable search of possible final states. These final states can include phase transition, deformation and mixed/evolving states. Our work consists of three parts: (1) development of an XRD simulation tool and use of traditional data science methods to match XRD patterns to experiments; (2) development of ML-based models capable of decomposing and identifying the lattice and orientation components of multicomponent experimental diffraction patterns; and (3) conducting experiments which showcase these new analysis tools in the study of phase transition mechanisms. Our target material has been cadmium sulfide, which exhibits complex orientation-dependent phase transformation mechanisms. In our current one-year LDRD, we have begun the analysis of high-quality c-axis CdS diffraction data from DCS and Thor experiments, which had until recently eluded orientation identification.

More Details

High pressure induced atomic and mesoscale phase behaviors of one-dimensional TiO2 anatase nanocrystals

MRS Bulletin

Meng, Lingyao; Duwal, Sakun D.; Lane, James M.; Ao, Tommy A.; Stoltzfus, Brian S.; Knudson, Marcus D.; Park, Changyong; Chow, Paul; Xiao, Yuming; Fan, Hongyou F.; Qin, Yang

Abstract: Here, we report the high pressure phase and morphology behavior of ordered anatase titanium dioxide (TiO2) nanocrystal arrays. One-dimensional TiO2 nanorods and nanorices were synthesized and self-assembled into ordered mesostructures. Their phase and morphological transitions at both atomic scale and mesoscale under pressure were studied using in situ synchrotron wide- and small-angle x-ray scattering (WAXS and SAXS) techniques. At the atomic scale, synchrotron WAXS reveals a pressure-induced irreversible amorphization up to 35 GPa in both samples but with different onset pressures. On the mesoscale, no clear phase transformations were observed up to 20 GPa by synchrotron SAXS. Intriguingly, sintering of TiO2 nanorods at mesoscale into nano-squares or nano-rectangles, as well as nanorices into nanowires, were observed for the first time by transmission electron microscopy. Such pressure-induced nanoparticle phase-amorphization and morphological changes provide valuable insights for design and engineering structurally stable nanomaterials. Impact statement: The high pressure behavior of nanocrystals (NCs) continues to be of interest, as previous studies have demonstrated that an externally applied pressure can serve as an efficient tool to induce structural phase transitions of NC assemblies at both the atomic scale and mesoscale without altering any chemistry by manipulating NC interatomic and interparticle distances. In addition, the high pressure generated deviatoric stress has been proven to be able to force adjacent NCs to connect and fuse into new crystalline nanostructures. Although the atomic structural evolution of TiO2 NCs under pressure has been widely investigated in the past decades, open questions remain regarding the mesoscale phase transition and morphology of TiO2 NC assemblies as a function of pressure. Therefore, in this work, systemic high pressure experiments on ordered arrays of TiO2 nanorods and nanorices were conducted by employing wide/small angle x-ray scattering techniques. The sintering of TiO2 assemblies at mesoscale into various nanostructures under pressure were revealed by transmission electron microscopy. Overall, this high pressure work fills the current gap in research on the mesoscale phase behavior of TiO2 assemblies. The observed morphology tunability attained by applying pressure opens new pathways for engineering nanomaterials and optimizing their collective properties through mechanical compression stresses. Graphical abstract: [Figure not available: see fulltext.].

More Details

A Platform-Independent X-ray Diffraction Diagnostic for Phase Transition Kinetics in Traditional and Synthetic Microstructure Materials (LDRD Project 213088 Final Report)

Ao, Tommy A.; Austin, Kevin N.; Breden, E.W.; Brown, Justin L.; Dean, Steven W.; Duwal, Sakun D.; Fan, Hongyou F.; Laros, James H.; Knudson, Marcus D.; Meng, Lingyao; Morgan, Dane; Pacheco, Lena M.; Qin, Yang; Stoltzfus, Brian S.; Thurston, Bryce A.; Usher, Joshua M.; Lane, James M.

Pulsed-power generators using the magnetic loading technique are able to produce well-controlled continuous ramp compression of condensed matter for high-pressure equation-of-state studies. X-ray diffraction (XRD) data from dynamically compressed samples provide direct measurements of the elastic compression of the crystal lattice, onset of plastic flow, strength-strain rate dependence, structural phase transitions, and density of crystal defects such as dislocations. Here, we present a cost effective, compact X-ray source for XRD measurements on pulsed-power-driven ramp-loaded samples. This combination of magnetically-driven ramp compression of materials with single, short-pulse XRD diagnostic will be a powerful capability for the dynamic materials community. The success in fielding this new XRD diagnostic dramatically improves our predictive capability and understanding of rate-dependent behavior at or near phase transition. As Sandia plans the next-generation pulse-power driver platform, a key element needed to deliver new state-of-the-art experiments will be having the necessary diagnostic tools to probe new regimes and phenomena. These diagnostics need to be as versatile, compact, and portable as they are powerful. The development of a platform-independent XRD diagnostic gives Sandia researchers a new window to study the microstructure and phase dynamics of materials under load. This project has paved the way for phase transition research in a variety of materials with mission interest.

More Details

Scale and rate in CdS pressure-induced phase transition

AIP Conference Proceedings

Lane, James M.; Koski, Jason K.; Thompson, Aidan P.; Srivastava, Ishan S.; Grest, Gary S.; Ao, Tommy A.; Stoltzfus, Brian S.; Austin, Kevin N.; Fan, Hongyou F.; Morgan, Dane; Knudson, Marcus D.

Here, we describe recent efforts to improve our predictive modeling of rate-dependent behavior at, or near, a phase transition using molecular dynamics simulations. Cadmium sulfide (CdS) is a well-studied material that undergoes a solid-solid phase transition from wurtzite to rock salt structures between 3 and 9 GPa. Atomistic simulations are used to investigate the dominant transition mechanisms as a function of orientation, size and rate. We found that the final rock salt orientations were determined relative to the initial wurtzite orientation, and that these orientations were different for the two orientations and two pressure regimes studied. The CdS solid-solid phase transition is studied, for both a bulk single crystal and for polymer-encapsulated spherical nanoparticles of various sizes.

More Details

Thermodynamics of the insulator-metal transition in dense liquid deuterium

Physical Review B

Desjarlais, Michael P.; Knudson, Marcus D.; Redmer, Ronald

Recent dynamic compression experiments [M. D. Knudson et al., Science 348, 1455 (2015); P. M. Celliers et al., Science 361, 677 (2018)] have observed the insulator-metal transition in dense liquid deuterium, but with an approximately 95-GPa difference in the quoted pressures for the transition at comparable estimated temperatures. It was claimed in the latter of these two papers that a very large latent heat effect on the temperature was overlooked in the first, requiring correction of those temperatures downward by a factor of 2, thereby putting both experiments on the same theoretical phase boundary and reconciling the pressure discrepancy. We have performed extensive path-integral molecular dynamics calculations with density functional theory to directly calculate the isentropic temperature drop due to latent heat in the insulator-metal transition for dense liquid deuterium and show that this large temperature drop is not consistent with the underlying thermodynamics.

More Details

Shock compression of fused silica: An impedance matching standard

Journal of Applied Physics

Root, Seth R.; Townsend, Joshua P.; Knudson, Marcus D.

The properties of silica (SiO 2) at extreme conditions have important applications for planetary processes and for high pressure research. We report the results of 125 plate impact shock compression experiments on fused silica spanning 200-1100 GPa using the Z machine at Sandia National Laboratories. Additionally, we present a complementary set of density functional theory based molecular dynamics calculations based on an amorphous reference state that extend the Hugoniot to 2500 GPa. We find good agreement between the Z data, extant laser driven shock compression experiment data, and computational results over most of the pressure range. With these results, fused silica can be used as a new impedance matching standard for shock compression experiments.

More Details

Sound velocity, shear modulus, and shock melting of beryllium along the Hugoniot

Physical Review B

McCoy, C.A.; Knudson, Marcus D.; Desjarlais, Michael P.

Magnetically launched flyer plates were used to investigate the shock response of beryllium between 90 and 300 GPa. Solid aluminum flyer plates drove steady shocks into polycrystalline beryllium to constrain the Hugoniot from 90 to 190 GPa. Multilayered copper/aluminum flyer plates generated a shock followed by an overtaking rarefaction which was used to determine the sound velocity in both solid and liquid beryllium between 130 and 300 GPa. Disappearance of the longitudinal wave was used to identify the onset of melt along the Hugoniot and measurements were compared to density functional theory calculations to explore the proposed hcp-bcc transition at high pressure. The onset of melt along the Hugoniot was identified at ∼205GPa, which is in good agreement with theoretical predictions. These results show no clear indication of an hcp-bcc transition prior to melt along the beryllium Hugoniot. Rather, the shear stress, determined from the release wave profiles, was found to gradually decrease with stress and eventually vanish at the onset of melt.

More Details

Comment on “Insulator-metal transition in dense fluid deuterium”

Science

Desjarlais, Michael P.; Knudson, Marcus D.; Redmer, Ronald

Celliers et al. (Reports, 17 August 2018, p. 677), in an attempt to reconcile differences in inferred metallization pressures, provide an alternative temperature analysis of the Knudson et al. experiments (Reports, 26 June 2015, p. 1455). We show here that this reanalysis implies an anomalously low specific heat for the metallic fluid that is clearly inconsistent with first-principles calculations.

More Details
Results 1–50 of 196
Results 1–50 of 196