Publications

Results 1–50 of 142

Search results

Jump to search filters

Review of the second charged-particle transport coefficient code comparison workshop

Physics of Plasmas

Stanek, Lucas J.; Hansen, Stephanie B.; Kononov, Alina K.; Cochrane, Kyle; Clay III, Raymond C.; Townsend, Joshua P.; Dumi, Amanda; Lentz, Meghan; Melton, Cody A.; Baczewski, Andrew D.; Knapp, Patrick F.; Haines, Brian M.; Hu, S.X.; Murillo, Michael S.; Stanton, Liam G.; Whitley, Heather D.; Baalrud, Scott D.; Babati, Lucas J.; Bethkenhagen, Mandy; Blanchet, Augustin; Collins, Lee A.; Faussurier, Gerald; French, Martin; Johnson, Zachary A.; Karasiev, Valentin V.; Kumar, Shashikant; Nichols, Katarina A.; Petrov, George M.; Recoules, Vanina; Redmer, Ronald; Ropke, Gerd; Schorner, Maximilian; Shaffer, Nathaniel R.; Sharma, Vidushi; Silvestri, Luciano G.; Soubiran, Francois; Suryanarayana, Phanish; Tacu, Mikael; White, Alexander J.

We report the results of the second charged-particle transport coefficient code comparison workshop, which was held in Livermore, California on 24-27 July 2023. This workshop gathered theoretical, computational, and experimental scientists to assess the state of computational and experimental techniques for understanding charged-particle transport coefficients relevant to high-energy-density plasma science. Data for electronic and ionic transport coefficients, namely, the direct current electrical conductivity, electron thermal conductivity, ion shear viscosity, and ion thermal conductivity were computed and compared for multiple plasma conditions. Additional comparisons were carried out for electron-ion properties such as the electron-ion equilibration time and alpha particle stopping power. Overall, 39 participants submitted calculated results from 18 independent approaches, spanning methods from parameterized semi-empirical models to time-dependent density functional theory. In the cases studied here, we find significant differences—several orders of magnitude—between approaches, particularly at lower temperatures, and smaller differences—roughly a factor of five—among first-principles models. We investigate the origins of these differences through comparisons of underlying predictions of ionic and electronic structure. The results of this workshop help to identify plasma conditions where computationally inexpensive approaches are accurate, where computationally expensive models are required, and where experimental measurements will have high impact.

More Details

Transport coefficients of warm dense matter from Kohn-Sham density functional theory

Physics of Plasmas

Melton, Cody A.; Clay III, Raymond C.; Cochrane, Kyle; Dumi, Amanda; Gardiner, Thomas A.; Lentz, Meghan; Townsend, Joshua P.

We present a comprehensive study of transport coefficients including DC electrical conductivity and related optical properties, electrical contribution to the thermal conductivity, and the shear viscosity via ab initio molecular dynamics and density functional theory calculations on the “priority 1” cases from the “Second Charged-Particle Transport Coefficient Workshop” [Stanek et al., Phys. Plasmas (to be published 2024)]. The purpose of this work is to carefully document the entire workflow used to generate our reported transport coefficients, up to and including our definitions of finite size and statistical convergence, extrapolation techniques, and choice of thermodynamic ensembles. In pursuit of accurate optical properties, we also present a novel, simple, and highly accurate algorithm for evaluating the Kramers-Kronig relations. These heuristics are often not discussed in the literature, and it is hoped that this work will facilitate the reproducibility of our data.

More Details

Improved melt model for power flow

Bennett, Nichelle L.; Thoma, Carsten; Welch, Dale; Cochrane, Kyle

Accelerators that drive z-pinch experiments transport current densities in excess of 1 MA/cm2 in order to melt or ionize the target and implode it on axis. These high current densities stress the transmission lines upstream from the target, where rapid electrode heating causes plasma formation, melt, and possibly vaporization. These plasmas negatively impact accelerator efficiency by diverting some portion of the current away from the target, referred to as “current loss”. Simulations that are able to reproduce this behavior may be applied to improving the efficiency of existing accelerators and to designing systems operating at ever higher current densities. The relativistic particle-in-cell code CHICAGO® is the primary code for modeling power flow on Sandia National Laboratories’ Z accelerator. We report here on new algorithms that incorporate vaporization and melt into the standard power-flow simulation framework. Taking a hybrid approach, the CHICAGO® kinetic/multi-fluid treatment has been expanded to include vaporization while the quasi-neutral equation-of-motion has been updated for melt at high current-densities. For vaporization, a new one-dimensional substrate model provides a more accurate calculation of electrode thermal, mass, and magnetic field diffusion as well as a means of emitting absorbed contaminants and vaporized metal ions. A quasi-fluid model has been implemented expressly to mimic the motion of imploding liners for accurate inductance histories. For melt, a multi-ion Hall-MHD option has been implemented and benchmarked against Alegra MHD. This new model is described with sufficient detail to reproduce these algorithms in any hybrid kinetic code. Physics results from the new code are also presented. A CHICAGO® Hall-MHD simulation of a radial transmission line demonstrates that Hall physics, not included in Alegra, has no significant impact on the diffusion of electrode material. When surface contaminant desorption is mocked in as a hydrogen surface plasma, both the surface and bulk-material plasmas largely compress under the influence of the j × B force. Similar results are seen in Alegra, which also shows magnetic and material diffusion scaling with peak current. Test vaporization simulations using MagLIF and a power-flow experimental geometry show Fe+ ions diffuse only a few hundred µm from the electrodes, so present models of Z power flow remain valid.

More Details

Seeding the Electrothermal Instability through a Three-Dimensional, Nonlinear Perturbation

Physical Review Letters

Awe, Thomas J.; Cochrane, Kyle; Peterson, K.J.; Yates, Kevin C.; Hutchinson, T.M.; Hatch, Maren W.; Bauer, B.S.; Tomlinson, K.; Sinars, Daniel

Electrothermal instability plays an important role in applications of current-driven metal, creating striations (which seed the magneto-Rayleigh-Taylor instability) and filaments (which provide a more rapid path to plasma formation). However, the initial formation of both structures is not well understood. Simulations show for the first time how a commonly occurring isolated defect transforms into the larger striation and filament, through a feedback loop connecting current and electrical conductivity. Simulations have been experimentally validated using defect-driven self-emission patterns.

More Details

Three-dimensional feedback processes in current-driven metal

Physical Review. E

Awe, Thomas J.; Cochrane, Kyle; Peterson, K.J.; Yates, Kevin C.; Hatch, Maren W.; Tomlinson, Kurt T.; Sinars, Daniel; Hutchinson, Trevor M.; Bauer, Bruno S.

Using three-dimensional (3D) magnetohydrodynamic simulations, we study how a pit on a metal surface evolves when driven by intense electrical current density j. Redistribution of j around the pit initiates a feedback loop: j both reacts to and alters the electrical conductivity σ, through Joule heating and hydrodynamic expansion, so that j and σ are constantly in flux. Thus, the pit transforms into larger striation and filament structures predicted by the electrothermal instability theory. Both structures are important in applications of current-driven metal: Here, the striation constitutes a density perturbation that can seed the magneto-Rayleigh-Taylor instability, while the filament provides a more rapid path to plasma formation, through 3D j redistribution. Simulations predict distinctive self-emission patterns, thus allowing for experimental observation and comparison.

More Details

ALEGRA: Finite element modeling for shock hydrodynamics and multiphysics

International Journal of Impact Engineering

Niederhaus, John H.J.; Bova, Steven W.; Carleton, James B.; Carpenter, John H.; Cochrane, Kyle; Crockatt, Michael M.; Dong, Wen; Fuller, Timothy J.; Granzow, Brian N.; Ibanez-Granados, Daniel A.; Kennon, Stephen R.; Luchini, Christopher B.; Moral, Ramon J.; Brien, Michael J.'.; Powell, Michael J.; Robinson, Allen C.; Rodriguez, Angel E.; Sanchez, Jason J.; Scott, Walter A.; Siefert, Christopher; Stagg, Alan K.; Tezaur, Irina K.; Voth, Thomas E.; Wilkes, John R.

ALEGRA is a multiphysics finite-element shock hydrodynamics code, under development at Sandia National Laboratories since 1990. Fully coupled multiphysics capabilities include transient magnetics, magnetohydrodynamics, electromechanics, and radiation transport. Importantly, ALEGRA is used to study hypervelocity impact, pulsed power devices, and radiation effects. The breadth of physics represented in ALEGRA is outlined here, along with simulated results for a selected hypervelocity impact experiment.

More Details

Electrode plasma formation and melt in Z-pinch accelerators

Physical Review Accelerators and Beams

Bennett, Nichelle L.; Welch, D.R.; Cochrane, Kyle; Leung, Kevin; Thoma, C.; Cuneo, Michael E.; Foulk, James W.

Recent studies of power flow and particle transport in multi-MA pulsed-power accelerators demonstrate that electrode plasmas may reduce accelerator efficiency by shunting current upstream from the load. The detailed generation and evolution of these electrode plasmas are examined here using fully relativistic, Monte Carlo particle-in-cell (PIC) and magnetohydrodynamic (MHD) simulations over a range of peak currents (8–48 MA). The PIC calculations, informed by vacuum science, describe the electrode surface breakdown and particle transport prior to electrode melt. The MHD calculations show the bulk electrode evolution during melt. The physical description provided by this combined study begins with the rising local magnetic field that increases the local electrode surface temperature. This initiates the thermal desorption of contaminants from the electrode surface, with contributions from atoms outgassing from the bulk metal. The contaminants rapidly ionize forming a 1015-1018 cm-3 plasma that is effectively resistive while weakly collisional because it is created within, and rapidly penetrated by, a strong magnetic field (> 30 T). Prior to melting, the density of this surface plasma is limited by the concentration of absorbed contaminants in the bulk (~1019 cm-3 for hydrogen), its diffusion, and ionization. Eventually, the melting electrodes form a conducting plasma (1021-1023 cm-3) that experiences j × B compression and a typical decaying magnetic diffusion profile. This physical sequence ignores the transport of collisional plasmas of 1019 cm-3 which may arise from electrode defects and associated instabilities. Nonetheless, this picture of plasma formation and melt may be extrapolated to higher-energy pulsed-power systems.

More Details

Ti-6Al-4V to over 1.2 TPa: Shock Hugoniot experiments, ab initio calculations, and a broad-range multiphase equation of state

Physical Review B

Foulk, James W.; Cochrane, Kyle; Knudson, Marcus D.; Ao, Tommy; Blada, Caroline B.; Jackson, Gerald S.; Gluth, Jeffry; Hanshaw, Heath L.; Scoglietti, Edward; Crockett, Scott

Titanium alloys are used in a large array of applications. In this work we focus our attention on the most used alloy, Ti-6Al-4V (Ti64), which has excellent mechanical and biocompatibility properties with applications in aerospace, defense, biomedical, and other fields. Here we present high-fidelity experimental shock compression data measured on Sandia's Z machine. We extend the principal shock Hugoniot for Ti64 to more than threefold compression, up to over 1.2 TPa. We use the data to validate our ab initio molecular dynamics simulations and to develop a highly reliable, multiphase equation of state (EOS) for Ti64, spanning a broad range of temperature and pressures. The first-principles simulations show very good agreement with Z data and with previous three-stage gas gun data from Sandia's STAR facility. The resulting principal Hugoniot and the broad-range EOS and phase diagram up to 10 TPa and 105 K are suitable for use in shock experiments and in hydrodynamic simulations. The high-precision experimental results and high-fidelity simulations demonstrate that the Hugoniot of the Ti64 alloy is stiffer than that of pure Ti and reveal that Ti64 melts on the Hugoniot at a significantly lower pressure and temperature than previously modeled.

More Details

Argon equation of state data to 1 TPa: Shock compression experiments and simulations

Physical Review B

Root, Seth; Mccoy, Chad A.; Cochrane, Kyle; Carpenter, John H.; Lemke, Raymond W.; Shulenburger, Luke N.; Mattsson, Thomas; Sterne, Philip A.

Argon is the most abundant noble gas on Earth and its noble, atomic fluid nature makes it an excellent candidate for comparison of experiment and theory at extreme conditions. We performed a combined computational and experimental study on shock compressed cryogenic liquid argon. Using Sandia's Z machine, we shock compressed liquid argon to 600 GPa and reshock states up to 950 GPa. Laser shock experiments at the Omega Laser facility extend the principal Hugoniot to 1000 GPa and provided temperature data along the principal Hugoniot. The plate impact experiments and laser shock experiments used well-characterized impedance matching standards and demonstrate consistent results between the two platforms over a common range. Density functional theory based molecular dynamics simulations provided additional data on the Hugoniot to 600 GPa. The combined experimental data and simulation results provide constraints on the development of new equation of state models at extreme conditions.

More Details

Improving Predictive Capability in REHEDS Simulations with Fast, Accurate, and Consistent Non-Equilibrium Material Properties

Hansen, Stephanie B.; Baczewski, Andrew D.; Gomez, Thomas; Hentschel, T.W.; Jennings, Christopher A.; Kononov, Alina K.; Nagayama, Taisuke; Adler, Kelsey; Cangi, A.; Cochrane, Kyle; Foulk, James W.; Schleife, A.

Predictive design of REHEDS experiments with radiation-hydrodynamic simulations requires knowledge of material properties (e.g. equations of state (EOS), transport coefficients, and radiation physics). Interpreting experimental results requires accurate models of diagnostic observables (e.g. detailed emission, absorption, and scattering spectra). In conditions of Local Thermodynamic Equilibrium (LTE), these material properties and observables can be pre-computed with relatively high accuracy and subsequently tabulated on simple temperature-density grids for fast look-up by simulations. When radiation and electron temperatures fall out of equilibrium, however, non-LTE effects can profoundly change material properties and diagnostic signatures. Accurately and efficiently incorporating these non-LTE effects has been a longstanding challenge for simulations. At present, most simulations include non-LTE effects by invoking highly simplified inline models. These inline non-LTE models are both much slower than table look-up and significantly less accurate than the detailed models used to populate LTE tables and diagnose experimental data through post-processing or inversion. Because inline non-LTE models are slow, designers avoid them whenever possible, which leads to known inaccuracies from using tabular LTE. Because inline models are simple, they are inconsistent with tabular data from detailed models, leading to ill-known inaccuracies, and they cannot generate detailed synthetic diagnostics suitable for direct comparisons with experimental data. This project addresses the challenge of generating and utilizing efficient, accurate, and consistent non-equilibrium material data along three complementary but relatively independent research lines. First, we have developed a relatively fast and accurate non-LTE average-atom model based on density functional theory (DFT) that provides a complete set of EOS, transport, and radiative data, and have rigorously tested it against more sophisticated first-principles multi-atom DFT models, including time-dependent DFT. Next, we have developed a tabular scheme and interpolation methods that compactly capture non-LTE effects for use in simulations and have implemented these tables in the GORGON magneto-hydrodynamic (MHD) code. Finally, we have developed post-processing tools that use detailed tabulated non-LTE data to directly predict experimental observables from simulation output.

More Details

ALEGRA: finite element modeling for shock hydrodynamics and multiphysics

Niederhaus, John H.J.; Powell, Michael J.; Bova, Steven W.; Carleton, James B.; Carpenter, John H.; Cochrane, Kyle; Crockatt, Michael M.; Dong, Wen; Fuller, Timothy J.; Granzow, Brian N.; Ibanez-Granados, Daniel A.; Kennon, Stephen R.; Luchini, Christopher B.; Moral, Ramon J.; Brien, Michael J.'.; Robinson, Allen C.; Rodriguez, Angel E.; Sanchez, Jason J.; Scott, Walter A.; Siefert, Christopher; Stagg, Alan K.; Tezaur, Irina K.; Voth, Thomas E.

Abstract not provided.

Determining the electrical conductivity of metals using the 2 MA Thor pulsed power driver

Review of Scientific Instruments

Porwitzky, Andrew J.; Cochrane, Kyle; Stoltzfus, Brian

We present the development of a pulsed power experimental technique to infer the electrical conductivity of metals from ambient to high energy density conditions. The method is implemented on Thor, a moderate scale (1-2 MA) pulsed power driver. The electrical conductivity of copper at elevated temperature (>4000 K) and pressure (>10 GPa) is determined, and a new tabular material model is developed, guided by density functional theory, which preserves agreement with existing experimental data. Minor modifications (<10%) are found to be necessary to the previous Lee-More-Desjarlais model isotherms in the vicinity of the melt transition in order to account for observed discrepancies with the new experimental data. An analytical model for magnetic direct drive flyer acceleration and Joule heating induced vaporization based on the Tsiolkovsky "rocket equation"is presented to assess sensitivity of the method to minor changes in electrical conductivity.

More Details
Results 1–50 of 142
Results 1–50 of 142