Publications

Results 101–142 of 142

Search results

Jump to search filters

Probing off-Hugoniot states in Ta, Cu, and Al to 1000 GPa compression with magnetically driven liner implosions

Journal of Applied Physics

Lemke, Raymond W.; Foulk, James W.; Dalton, Devon; Brown, Justin L.; Tomlinson, K.; Robertson, G.R.; Knudson, Marcus D.; Harding, Eric H.; Wills, Ann E.; Carpenter, John H.; Drake, Richard R.; Cochrane, Kyle; Blue, B.E.; Robinson, Allen C.; Mattsson, Thomas

We report on a new technique for obtaining off-Hugoniot pressure vs. density data for solid metals compressed to extreme pressure by a magnetically driven liner implosion on the Z-machine (Z) at Sandia National Laboratories. In our experiments, the liner comprises inner and outer metal tubes. The inner tube is composed of a sample material (e.g., Ta and Cu) whose compressed state is to be inferred. The outer tube is composed of Al and serves as the current carrying cathode. Another aluminum liner at much larger radius serves as the anode. A shaped current pulse quasi-isentropically compresses the sample as it implodes. The iterative method used to infer pressure vs. density requires two velocity measurements. Photonic Doppler velocimetry probes measure the implosion velocity of the free (inner) surface of the sample material and the explosion velocity of the anode free (outer) surface. These two velocities are used in conjunction with magnetohydrodynamic simulation and mathematical optimization to obtain the current driving the liner implosion, and to infer pressure and density in the sample through maximum compression. This new equation of state calibration technique is illustrated using a simulated experiment with a Cu sample. Monte Carlo uncertainty quantification of synthetic data establishes convergence criteria for experiments. Results are presented from experiments with Al/Ta, Al/Cu, and Al liners. Symmetric liner implosion with quasi-isentropic compression to peak pressure ∼1000 GPa is achieved in all cases. These experiments exhibit unexpectedly softer behavior above 200 GPa, which we conjecture is related to differences in the actual and modeled properties of aluminum.

More Details

Exploring magnetized liner inertial fusion with a semi-analytic model

Physics of Plasmas

Mcbride, Ryan; Slutz, Stephen A.; Vesey, Roger A.; Gomez, Matthew R.; Sefkow, Adam B.; Hansen, Stephanie B.; Knapp, P.F.; Schmit, Paul; Geissel, Matthias; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Harding, Eric H.; Awe, Thomas J.; Rovang, Dean C.; Hahn, Kelly; Martin, Matthew R.; Cochrane, Kyle; Peterson, K.J.; Rochau, G.A.; Porter, John L.; Stygar, William A.; Campbell, Edward M.; Nakhleh, Charles W.; Herrmann, Mark C.; Cuneo, Michael E.; Sinars, Daniel

In this study, we explore magnetized liner inertial fusion (MagLIF) [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] using a semi-analytic model [R. D. McBride and S. A. Slutz, Phys. Plasmas 22, 052708 (2015)]. Specifically, we present simulation results from this model that: (a) illustrate the parameter space, energetics, and overall system efficiencies of MagLIF; (b) demonstrate the dependence of radiative loss rates on the radial fraction of the fuel that is preheated; (c) explore some of the recent experimental results of the MagLIF program at Sandia National Laboratories [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]; (d) highlight the experimental challenges presently facing the MagLIF program; and (e) demonstrate how increases to the preheat energy, fuel density, axial magnetic field, and drive current could affect future MagLIF performance.

More Details

Exploring magnetized liner inertial fusion with a semi-analytic model

Mcbride, Ryan; Slutz, Stephen A.; Sinars, Daniel; Vesey, Roger A.; Gomez, Matthew R.; Sefkow, Adam B.; Hansen, Stephanie B.; Cochrane, Kyle; Schmit, Paul; Knapp, P.F.; Geissel, Matthias; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Martin, Matthew R.; Awe, Thomas J.; Rovang, Dean C.; Lamppa, Derek C.; Peterson, K.J.; Rochau, G.A.; Porter, John L.; Stygar, William A.; Cuneo, Michael E.

Abstract not provided.

Exploring magnetized liner inertial fusion with a semi-analytic model

Mcbride, Ryan; Slutz, Stephen A.; Sinars, Daniel; Vesey, Roger A.; Gomez, Matthew R.; Sefkow, Adam B.; Hansen, Stephanie B.; Cochrane, Kyle; Rovang, Dean C.; Lamppa, Derek C.; Geissel, Matthias; Harvey-Thompson, Adam J.; Schmit, Paul; Knapp, P.F.; Awe, Thomas J.; Jennings, Christopher A.; Martin, Matthew R.; Peterson, K.J.; Rochau, G.A.; Porter, John L.; Stygar, William A.; Cuneo, Michael E.

Abstract not provided.

Low Adiabat Compression of Liquid Deuterium Filled Cylindrical Liners to 0.1?2 Gbar

Physical Review Letters

Knapp, P.F.; Martin, Matthew; Dalton, Devon; Foulk, James W.; Davis, Jean-Paul; Romero, Dustin H.; Cochrane, Kyle; Loisel, Guillaume P.; Mattsson, Thomas; Mcbride, Ryan; Sinars, Daniel

We report on experiments where cylindrical beryllium liners filled with liquid deuterium were compressed to extreme pressure and density with current pulse shaping. In one set of experiments the pressure at stagnation is inferred to be & 100 Mbar using penetrating radiography. A peak liner convergence ratio (initial radius over final radius) of 7.6 was measured resulting in an average deuterium density of 10 g=cm3 and areal density of 0.45 g=cm2. The stagnation shock propagating radially outward through the liner wall was directly measured with a strength of ≈ 120 Mbar. In a second set of experiments the liner was imploded to a peak convergence of 19 resulting in a density of 55 g=cm3 and areal density of 0.5 g=cm2. The pressure at stagnation in this experiment is estimated to be 2 Gbar. This platform enables the study of high-pressure, high-density, implosion deceleration and stagnation dynamics at spatial scales that are readily diagnosable (R ~ 0.1 -- 0.4 mm). Thus, these experiments are directly relevant to both Inertial Con nement Fusion and the study of material properties under extreme conditions.

More Details

Ethane-xenon mixtures under shock conditions

Physical Review B - Condensed Matter and Materials Physics

Magyar, Rudolph J.; Root, Seth; Mattsson, Thomas; Cochrane, Kyle; Flicker, Dawn

Mixtures of light elements with heavy elements are important in inertial confinement fusion. We explore the physics of molecular scale mixing through a validation study of equation of state (EOS) properties. Density functional theory molecular dynamics (DFT-MD) at elevated temperature and pressure is used to obtain the thermodynamic state properties of pure xenon, ethane, and various compressed mixture compositions along their principal Hugoniots. To validate these simulations, we have performed shock compression experiments using the Sandia Z-Machine. A bond tracking analysis correlates the sharp rise in the Hugoniot curve with the completion of dissociation in ethane. The DFT-based simulation results compare well with the experimental data along the principal Hugoniots and are used to provide insight into the dissociation and temperature along the Hugoniots as a function of mixture composition. Interestingly, we find that the compression ratio for complete dissociation is similar for several compositions suggesting a limiting compression for C-C bonded systems.

More Details

On the scaling of the magnetically accelerated flyer plate technique to currents greater than 20 MA

Journal of Physics: Conference Series

Lemke, Raymond W.; Knudson, Marcus D.; Cochrane, Kyle; Desjarlais, Michael P.; Asay, J.R.

In this article we discuss scaling the magnetically accelerated flyer plate technique to currents greater than is available on the Z accelerator. Peak flyer plate speeds in the range 7-46 km/s are achieved in pulsed power driven, hyper-velocity impact experiments on Z for peak currents in the range 8-20 MA. The highest (lowest) speeds are produced using aluminum (aluminum-copper) flyer plates. In either case, the ≈1 mm thick flyer plate is shocklessly accelerated by magnetic pressure to ballistic speed in ≈400 ns; it arrives at the target with a fraction of material at standard density. During acceleration a melt front, due to resistive heating, moves from the drive-side toward the target-side of the flyer plate; the speed of the melt front increases with increasing current. Peak flyer speeds on Z scale quadratically (linearly) with current at the low (high) end of the range. Magnetohydrodynamic simulation shows that the change in scaling is due to geometric deformation, and that linear scaling continues as current increases. However, the combined effects of shockless acceleration and resistive heating lead to an upper bound on the magnetic field feasible for pulsed power driven flyer plate experiments, which limits the maximum possible speed of a useful flyer plate to < 100 km/s. © Published under licence by IOP Publishing Ltd.

More Details

ALEGRA Update: Modernization and Resilience Progress

Robinson, Allen C.; Petney, Sharon; Drake, Richard R.; Weirs, Gregory; Adams, Brian M.; Vigil, Dena; Carpenter, John H.; Garasi, Christopher J.; Wong, Michael K.; Robbins, Joshua; Siefert, Christopher; Strack, Otto E.; Wills, Ann E.; Trucano, Timothy G.; Bochev, Pavel B.; Summers, Randall M.; Stewart, James; Ober, Curtis C.; Rider, William J.; Haill, Thomas A.; Lemke, Raymond W.; Cochrane, Kyle; Desjarlais, Michael P.; Love, Edward; Voth, Thomas E.; Mosso, Stewart J.; Niederhaus, John H.J.

Abstract not provided.

Recyclable transmission line concept for z-pinch driven inertial fusion energy

Slutz, Stephen A.; Vesey, Roger A.; Olson, Craig L.; Cochrane, Kyle

Recyclable transmission lines (RTL)s are being studied as a means to repetitively drive z pinches to generate fusion energy. We have shown previously that the RTL mass can be quite modest. Minimizing the RTL mass reduces recycling costs and the impulse delivered to the first wall of a fusion chamber. Despite this reduction in mass, a few seconds will be needed to reload an RTL after each subsequent shot. This is in comparison to other inertial fusion approaches that expect to fire up to ten capsules per second. Thus a larger fusion yield is needed to compensate for the slower repetition rate in a z-pinch driven fusion reactor. We present preliminary designs of z-pinch driven fusion capsules that provide an adequate yield of 1-4 GJ. We also present numerical simulations of the effect of these fairly large fusion yields on the RTL and the first wall of the reactor chamber. These simulations were performed with and without a neutron absorbing blanket surrounding the fusion explosion. We find that the RTL will be fully vaporized out to a radius of about 3 meters assuming normal incidence. However, at large enough radius the RTL will remain in either the liquid or solid state and this portion of the RTL could fragment and become shrapnel. We show that a dynamic fragmentation theory can be used to estimate the size of these fragmented particles. We discuss how proper design of the RTL can allow this shrapnel to be directed away from the sensitive mechanical parts of the reactor chamber.

More Details

Wavelength dependent measurements of optical fiber transit time, material dispersion, and attenuation

Journal of Applied Optics

Cochrane, Kyle; Bailey, James E.; Lake, Patrick; Carlson, Alan L.

A new method for measuring the wavelength dependence of the transit time, material dispersion, and attenuation of an optical fiber is described. The authors inject light from a 4-ns risetime pulsed broad-band flashlamp into various length fibers and record the transmitted signals with a time-resolved spectrograph. Segments of data spanning an approximately 3,000 {angstrom} range are recorded from a single flashlamp pulse. Comparison of data acquired with short and long fibers enables the determination of the transit time and the material dispersion as functions of wavelength dependence for the entire recorded spectrum simultaneously. The wavelength dependent attenuation is also determined from the signal intensities. The method is demonstrated with experiments using a step index 200-{micro}m-diameter SiO{sub 2} fiber. The results agree with the transit time determined from the bulk glass refractive index to within {+-} 0.035% for the visible (4,000--7,200 {angstrom}) spectrum and 0.12% for the ultraviolet (2,650--4,000 {angstrom}) spectrum, and with the attenuation specified by the fiber manufacturer to within {+-} 10%.

More Details

Nuclear Dynamics Consequence Analysis (NDCA) for the Disposal of Spent Nuclear Fuel in an Underground Geologic Repository, Volume 3: Appendices

Sanchez, Lawrence C.; Aguilar, Richard A.; Cochrane, Kyle

The United States Department of Energy Office of Environmental Management's (DOE/EM's) National Spent Nuclear Fuel Program (NSNFP), through a collaboration between Sandia National Laboratories (SNL) and Idaho National Engineering and Environmental Laboratory (INEEL), is conducting a systematic Nuclear Dynamics Consequence Analysis (NDCA) of the disposal of SNFs in an underground geologic repository sited in unsaturated tuff. This analysis is intended to provide interim guidance to the DOE for the management of the SNF while they prepare for final compliance evaluation. This report presents results from a Nuclear Dynamics Consequence Analysis (NDCA) that examined the potential consequences and risks of criticality during the long-term disposal of spent nuclear fuel owned by DOE-EM. This analysis investigated the potential of post-closure criticality, the consequences of a criticality excursion, and the probability frequency for post-closure criticality. The results of the NDCA are intended to provide the DOE-EM with a technical basis for measuring risk which can be used for screening arguments to eliminate post-closure criticality FEPs (features, events and processes) from consideration in the compliance assessment because of either low probability or low consequences. This report is composed of an executive summary (Volume 1), the methodology and results of the NDCA (Volume 2), and the applicable appendices (Volume 3).

More Details
Results 101–142 of 142
Results 101–142 of 142