Publications

Results 26–50 of 424

Search results

Jump to search filters

Quantification of the effect of uncertainty on impurity migration in PISCES-A simulated with GITR

Nuclear Fusion

Younkin, T.R.; Sargsyan, Khachik S.; Casey, Tiernan A.; Najm, H.N.; Canik, J.M.; Green, D.L.; Doerner, R.P.; Nishijima, D.; Baldwin, M.; Drobny, J.; Curreli, D.; Wirth, B.D.

A Bayesian inference strategy has been used to estimate uncertain inputs to global impurity transport code (GITR) modeling predictions of tungsten erosion and migration in the linear plasma device, PISCES-A. This allows quantification of GITR output uncertainty based on the uncertainties in measured PISCES-A plasma electron density and temperature profiles (n e, T e) used as inputs to GITR. The technique has been applied for comparison to dedicated experiments performed for high (4 × 1022 m-2 s-1) and low (5 × 1021 m-2 s-1) flux 250 eV He-plasma exposed tungsten (W) targets designed to assess the net and gross erosion of tungsten, and corresponding W impurity transport. The W target design and orientation, impurity collector, and diagnostics, have been designed to eliminate complexities associated with tokamak divertor plasma exposures (inclined target, mixed plasma species, re-erosion, etc) to benchmark results against the trace impurity transport model simulated by GITR. The simulated results of the erosion, migration, and re-deposition of W during the experiment from the GITR code coupled to materials response models are presented. Specifically, the modeled and experimental W I emission spectroscopy data for a 429.4 nm line and net erosion through the target and collector mass difference measurements are compared. The methodology provides predictions of observable quantities of interest with quantified uncertainty, allowing estimation of moments, together with the sensitivities to plasma temperature and density.

More Details

Using computational singular perturbation as a diagnostic tool in ODE and DAE systems: a case study in heterogeneous catalysis

Combustion Theory and Modelling

Diaz-Ibarra, Oscar H.; Kim, Kyungjoo K.; Safta, Cosmin S.; Zador, Judit Z.; Najm, H.N.

We have extended the computational singular perturbation (CSP) method to differential algebraic equation (DAE) systems and demonstrated its application in a heterogeneous-catalysis problem. The extended method obtains the CSP basis vectors for DAEs from a reduced Jacobian matrix that takes the algebraic constraints into account. We use a canonical problem in heterogeneous catalysis, the transient continuous stirred tank reactor (T-CSTR), for illustration. The T-CSTR problem is modelled fundamentally as an ordinary differential equation (ODE) system, but it can be transformed to a DAE system if one approximates typically fast surface processes using algebraic constraints for the surface species. We demonstrate the application of CSP analysis for both ODE and DAE constructions of a T-CSTR problem, illustrating the dynamical response of the system in each case. We also highlight the utility of the analysis in commenting on the quality of any particular DAE approximation built using the quasi-steady state approximation (QSSA), relative to the ODE reference case.

More Details

Geometry optimization speedup through a geodesic approach to internal coordinates

Journal of Chemical Physics

Hermes, Eric H.; Sargsyan, Khachik S.; Najm, H.N.; Zador, Judit Z.

We present a new geodesic-based method for geometry optimization in a basis set of redundant internal coordinates. Our method updates the molecular geometry by following the geodesic generated by a displacement vector on the internal coordinate manifold, which dramatically reduces the number of steps required to converge to a minimum. Our method can be implemented in any existing optimization code, requiring only implementation of derivatives of the Wilson B-matrix and the ability to numerically solve an ordinary differential equation.

More Details

Trajectory Optimization via Unsupervised Probabilistic Learning On Manifolds

Safta, Cosmin S.; Najm, H.N.; Grant, Michael J.; Sparapany, Michael J.

This report investigates the use of unsupervised probabilistic learning techniques for the analysis of hypersonic trajectories. The algorithm first extracts the intrinsic structure in the data via a diffusion map approach. Using the diffusion coordinates on the graph of training samples, the probabilistic framework augments the original data with samples that are statistically consistent with the original set. The augmented samples are then used to construct conditional statistics that are ultimately assembled in a path-planing algorithm. In this framework the controls are determined stage by stage during the flight to adapt to changing mission objectives in real-time. A 3DOF model was employed to generate optimal hypersonic trajectories that comprise the training datasets. The diffusion map algorithm identfied that data resides on manifolds of much lower dimensionality compared to the high-dimensional state space that describes each trajectory. In addition to the path-planing worflow we also propose an algorithm that utilizes the diffusion map coordinates along the manifold to label and possibly remove outlier samples from the training data. This algorithm can be used to both identify edge cases for further analysis as well as to remove them from the training set to create a more robust set of samples to be used for the path-planing process.

More Details
Results 26–50 of 424
Results 26–50 of 424