Publications

Results 1–50 of 152

Search results

Jump to search filters

A multirate mass transfer model to represent the interaction of multicomponent biogeochemical processes between surface water and hyporheic zones (SWAT-MRMT-R 1.0)

Geoscientific Model Development

Fang, Yilin; Chen, Xingyuan; Velez, Jesus G.; Zhang, Xuesong; Duan, Zhuoran; Hammond, Glenn E.; Goldman, Amy E.; Garayburu-Caruso, Vanessa A.; Graham, Emily B.

Surface water quality along river corridors can be modulated by hyporheic zones (HZs) that are ubiquitous and biogeochemically active. Watershed management practices often ignore the potentially important role of HZs as a natural reactor. To investigate the effect of hydrological exchange and biogeochemical processes on the fate of nutrients in surface water and HZs, a novel model, SWAT-MRMT-R, was developed coupling the Soil and Water Assessment Tool (SWAT) watershed model and the reaction module from a flow and reactive transport code (PFLOTRAN). SWAT-MRMT-R simulates concurrent nonlinear multicomponent biogeochemical reactions in both the channel water and its surrounding HZs, connecting the channel water and HZs through hyporheic exchanges using multirate mass transfer (MRMT) representation. Within the model, HZs are conceptualized as transient storage zones with distinguished exchange rates and residence times. The biogeochemical processes within HZs are different from those in the channel water. Hyporheic exchanges are modeled as multiple first-order mass transfers between the channel water and HZs. As a numerical example, SWAT-MRMT-R is applied to the Hanford Reach of the Columbia River, a large river in the United States, focusing on nitrate dynamics in the channel water. Major nitrate contaminants entering the Hanford Reach include those from the legacy waste, irrigation return flows (irrigation water that is not consumed by crops and runs off as point sources to the stream), and groundwater seepage resulting from irrigated agriculture. A two-step reaction sequence for denitrification and an aerobic respiration reaction is assumed to represent the biogeochemical transformations taking place within the HZs. The spatially variable hyporheic exchange rates and residence times in this example are estimated with the basin-scale Networks with EXchange and Subsurface Storage (NEXSS) model. Our simulation results show that (1), given a residence time distribution, how the exchange fluxes to HZs are approximated when using MRMT can significantly change the amount of nitrate consumption in HZs through denitrification and (2) source locations of nitrate have a different impact on surface water quality due to the spatially variable hyporheic exchanges.

More Details

Progress in Deep Geologic Disposal Safety Assessment in the U.S. since 2010

Mariner, Paul; Connolly, Laura A.; Cunningham, Leigh; Debusschere, Bert; Dobson, David C.; Frederick, Jennifer M.; Hammond, Glenn E.; Jordan, Spencer H.; Laforce, Tara C.; Nole, Michael A.; Park, Heeho D.; Foulk, James W.; Rogers, Ralph; Seidl, D.T.; Sevougian, Stephen D.; Stein, Emily; Swift, Peter; Swiler, Laura P.; Vo, Jonathan; Wallace, Michael

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Spent Fuel & Waste Disposition (SFWD) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high-level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling (DOE 2011, Table 6). These priorities are directly addressed in the SFWST Geologic Disposal Safety Assessment (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media.

More Details

Using Bayesian Networks for Sensitivity Analysis of Complex Biogeochemical Models

Water Resources Research

Dai, Heng; Chen, Xingyuan; Ye, Ming; Song, Xuehang; Hammond, Glenn E.; Hu, Bill; Zachara, John M.

Sensitivity analysis is a vital tool in numerical modeling to identify important parameters and processes that contribute to the overall uncertainty in model outputs. We developed a new sensitivity analysis method to quantify the relative importance of uncertain model processes that contain multiple uncertain parameters. The method is based on the concepts of Bayesian networks (BNs) to account for complex hierarchical uncertainty structure of a model system. We derived a new set of sensitivity indices using the methodology of variance-based global sensitivity analysis with the Bayesian inference. The framework is capable of representing the detailed uncertainty information of a complex model system using BNs and affords flexible grouping of different uncertain inputs given their characteristics and dependency structures. We have implemented the method on a real-world biogeochemical model at the groundwater-surface water interface within the Hanford Site's 300 Area. The uncertainty sources of the model were first grouped into forcing scenario and three different processes based on our understanding of the complex system. The sensitivity analysis results indicate that both the reactive transport and groundwater flow processes are important sources of uncertainty for carbon-consumption predictions. Within the groundwater flow process, the structure of geological formations is more important than the permeability heterogeneity within a given geological formation. Our new sensitivity analysis framework based on BNs offers substantial flexibility for investigating the importance of combinations of interacting uncertainty sources in a hierarchical order, and it is expected to be applicable to a wide range of multiphysics models for complex systems.

More Details

Dam Operations and Subsurface Hydrogeology Control Dynamics of Hydrologic Exchange Flows in a Regulated River Reach

Water Resources Research

Shuai, Pin; Chen, Xingyuan; Song, Xuehang; Hammond, Glenn E.; Zachara, John; Royer, Patrick; Ren, Huiying; Perkins, William A.; Richmond, Marshall C.; Huang, Maoyi

Hydrologic exchange flows (HEFs) across the river-aquifer interface have important implications for biogeochemical processes and contaminant plume migration in the river corridor, yet little is known about the hydrogeomorphic factors that control HEFs dynamics under dynamic flow conditions. Here, we developed a 3-D numerical model for a large regulated river corridor along the Columbia River to study how HEFs are controlled by the interplays between dam-regulated flow conditions and hydrogeomorphic features of such river corridor system. Our results revealed highly variable intra-annual spatiotemporal patterns in HEFs along the 75-km river reach, as well as strong interannual variability with larger exchange volumes in wet years than dry years. In general, the river was losing during late spring to early summer when the river stage was high, and river was gaining in fall and winter when river stage was low. The magnitude and timing of river stage fluctuations controlled the timing of high exchange rates. Both river channel geomorphology and the thickness of a highly permeable river bank geologic layer controlled the locations of exchange hot spots, while the latter played a dominant role. Dam-induced, subdaily to daily river stage fluctuations drove high-frequency variations in HEFs across the river-aquifer interfaces, resulting in greater overall exchange volumes as compared to the case without high-frequency flows. Our results demonstrated that upstream dam operations enhanced the exchange between river water and groundwater with strong potential influence on the associated biogeochemical processes and on the fate and transport of groundwater contaminant plumes in such river corridors.

More Details

Benchmarking and QA testing in PFLOTRAN

International High-Level Radioactive Waste Management 2019, IHLRWM 2019

Laforce, Tara C.; Frederick, Jennifer M.; Hammond, Glenn E.; Stein, Emily; Mariner, Paul

PFLOTRAN is well-established in single-phase reactive transport problems, and current research is expanding its visibility and capability in two-phase subsurface problems. A critical part of the development of simulation software is quality assurance (QA). The purpose of the present work is QA testing to verify the correct implementation and accuracy of two-phase flow models in PFLOTRAN. An important early step in QA is to verify the code against exact solutions from the literature. In this work a series of QA tests on models that have known analytical solutions are conducted using PFLOTRAN. In each case the simulated saturation profile is rigorously shown to converge to the exact analytical solution. These results verify the accuracy of PFLOTRAN for use in a wide variety of two-phase modelling problems with a high degree of nonlinearity in the interaction between phase behavior and fluid flow.

More Details

Modulating factors of hydrologic exchanges in a large-scale river reach: Insights from three-dimensional computational fluid dynamics simulations

Hydrological Processes

Hammond, Glenn E.; Bao, Jie; Huang, Maoyi; Hou, Zhangshuan; Perkins, William; Harding, Samuel; Titzler, Scott; Ren, Huiying; Thorne, Paul; Suffield, Sarah; Murray, Christopher; Zachara, John

Hydrologic exchange is a critical mechanism that shapes hydrological and biogeochemical processes along a river corridor. Because of limitations in field accessibility, computational demand, and complexities of geomorphology and subsurface geology, full three-dimensional modelling studies to quantify hydrologic exchange fluxes (HEFs) have been limited mostly to local-scale applications. At reach scales, although surface flow conditions and subsurface physical properties are well-known factors that modulate hydrologic exchanges, quantitative measures that can describe the effects of these factors on the strength and direction of such exchanges do not exist. To address this issue, we developed a one-way coupled surface and subsurface water flow model using the commercial computational fluid dynamics (CFD) software STAR-CCM+ and applied it to simulate HEFs in a 7-km long reach along the main stem of the Columbia River in the United States. The model was validated against flow velocity measurements from an acoustic Doppler current profiler in the river, vertical HEFs estimated from a set of temperature profilers installed across the riverbed, and simulations from a reactive transport model. The validated model then was employed to systematically investigate how HEFs could be influenced by surface water fluid dynamics, subsurface structures, and hydrogeological properties. Our results suggest that reach-scale HEFs are dominated primarily by the thickness of the riverbed alluvium layer, and then by the alluvium permeability, the depth of the underlying impermeable layer, and the pressure boundary condition. Our results also elucidate the scale dependence of HEFs on fluid dynamics that can be captured only by three-dimensional CFD models. That is, while the net HEFs over the entire 7-km domain are not significantly influenced by surface water dynamics pressure, the dynamic pressure induced by fluid dynamics can lead to more than 15% in net HEFs for a river section of a few hundred metres.

More Details

Development and evaluation of a variably saturated flow model in the global E3SM Land Model (ELM) version 1.0

Geoscientific Model Development

Bisht, Gautam; Riley, William J.; Hammond, Glenn E.; Lorenzetti, David M.

Improving global-scale model representations of near-surface soil moisture and groundwater hydrology is important for accurately simulating terrestrial processes and predicting climate change effects on water resources. Most existing land surface models, including the default E3SM Land Model (ELMv0), which we modify here, routinely employ different formulations for water transport in the vadose and phreatic zones. Clark et al. (2015) identified a variably saturated Richards equation flow model as an important capability for improving simulation of coupled soil moisture and shallow groundwater dynamics. In this work, we developed the Variably Saturated Flow Model (VSFM) in ELMv1 to unify the treatment of soil hydrologic processes in the unsaturated and saturated zones. VSFM was tested on three benchmark problems and results were evaluated against observations and an existing benchmark model (PFLOTRAN). The ELMv1-VSFM's subsurface drainage parameter, fd, was calibrated to match an observationally constrained and spatially explicit global water table depth (WTD) product. Optimal spatially explicit fd values were obtained for 79% of global 1.9° × 2.5° grid cells, while the remaining 21% of global grid cells had predicted WTD deeper than the observationally constrained estimate. Comparison with predictions using the default fd value demonstrated that calibration significantly improved predictions, primarily by allowing much deeper WTDs. Model evaluation using the International Land Model Benchmarking package (ILAMB) showed that improvements in WTD predictions did not degrade model skill for any other metrics. We evaluated the computational performance of the VSFM model and found that the model is about 30% more expensive than the default ELMv0 with an optimal processor layout. The modular software design of VSFM not only provides flexibility to configure the model for a range of problem setups but also allows for building the model independently of the ELM code, thus enabling straightforward testing of the model's physics against other models.

More Details

Advances in Geologic Disposal Safety Assessment and an Unsaturated Alluvium Reference Case

Mariner, Paul; Stein, Emily; Cunningham, Leigh; Frederick, Jennifer M.; Hammond, Glenn E.; Lowry, Thomas S.; Basurto, Eduardo

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Depat ment of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (OFCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling (DOE 2011, Table 6). These priorities are directly addressed in the SFWST Geologic Disposal Safety Assessment (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media. This report describes specific GDSA activities in fiscal year 2018 (FY 2018) toward the development of GDSA Framework, an enhanced disposal system modeling and analysis capability for geologic disposal of nuclear waste. GDSA Framework employs the PFLOTRAN thermal-hydrologic-chemical multiphysics code (Hammond et al. 2011a; Lichtner and Hammond 2012) and the Dakota uncertainty sampling and propagation code (Adams et al. 2012; Adams et al. 2013). Each code is designed for massivelyparallel processing in a high-performance computing (HPC) environment. Multi-physics representations in PFLOTRAN are used to simulate various coupled processes including heat flow, fluid flow, waste dissolution, radionuclide release, radionuclide decay and ingrowth, precipitation and dissolution of secondary phases, and radionuclide transport through engineered barriers and natural geologic barriers to the biosphere. Dakota is used to generate sets of representative realizations and to analyze parameter sensitivity.

More Details

Riverbed Hydrologic Exchange Dynamics in a Large Regulated River Reach

Water Resources Research

Hammond, Glenn E.; Zhou, Tian; Huang, Maoyi; Hou, Zhangshuan; Bao, Jie; Arntzen, Evan; Mackley, R.; Harding, Samuel F.; Titzler, P.S.; Murray, Christopher J.; Perkins, William A.; Chen, Xingyuan; Stegen, James C.; Thorne, Paul D.; Zachara, John M.

Hydrologic exchange flux (HEF) is an important hydrologic component in river corridors that includes both bidirectional (hyporheic) and unidirectional (gaining/losing) surface water-groundwater exchanges. Quantifying HEF rates in a large regulated river is difficult due to the large spatial domains, complexity of geomorphologic features and subsurface properties, and the great stage variations created by dam operations at multiple time scales. In this study, we developed a method that combined numerical modeling and field measurements for estimating HEF rates across the riverbed in a 7 km long reach of the highly regulated Columbia River. A high-resolution computational fluid dynamics (CFD) modeling framework was developed and validated by field measurements and other modeling results to characterize the HEF dynamics across the riverbed. We found that about 85% of the time from 2008 to 2014 the river was losing water with an annual average net HEF rates across the riverbed (Qz) of −2.3 m3 s−1 (negative indicating downwelling). June was the only month that the river gained water, with monthly averaged Qz of 0.8 m3 s−1. We also found that the daily dam operations increased the hourly gross gaining and losing rate over an average year of 8% and 2%, respectively. By investigating the HEF feedbacks at various time scales, we suggest that the dam operations could reduce the HEF at seasonal time scale by decreasing the seasonal flow variations, while also enhance the HEF at subdaily time scale by generating high-frequency discharge variations. These changes could generate significant impacts on biogeochemical processes in the hyporheic zone.

More Details

Coupling a three-dimensional subsurface flow and transport model with a land surface model to simulate stream-aquifer-land interactions (CP v1.0)

Geoscientific Model Development

Hammond, Glenn E.; Bisht, Gautam; Huang, Maoyi; Zhou, Tian; Chen, Xingyuan; Dai, Heng; Riley, William J.; Downs, Janelle L.; Liu, Ying; Zachara, John M.

A fully coupled three-dimensional surface and subsurface land model is developed and applied to a site along the Columbia River to simulate three-way interactions among river water, groundwater, and land surface processes. The model features the coupling of the Community Land Model version 4.5 (CLM4.5) and a massively parallel multiphysics reactive transport model (PFLOTRAN). The coupled model, named CP v1.0, is applied to a 400 m × 400 m study domain instrumented with groundwater monitoring wells along the Columbia River shoreline. CP v1.0 simulations are performed at three spatial resolutions (i.e., 2, 10, and 20 m) over a 5-year period to evaluate the impact of hydroclimatic conditions and spatial resolution on simulated variables. Results show that the coupled model is capable of simulating groundwater-river-water interactions driven by river stage variability along managed river reaches, which are of global significance as a result of over 30 000 dams constructed worldwide during the past half-century. Our numerical experiments suggest that the land-surface energy partitioning is strongly modulated by groundwater-river-water interactions through expanding the periodically inundated fraction of the riparian zone, and enhancing moisture availability in the vadose zone via capillary rise in response to the river stage change. Meanwhile, CLM4.5 fails to capture the key hydrologic process (i.e., groundwater-river-water exchange) at the site, and consequently simulates drastically different water and energy budgets. Furthermore, spatial resolution is found to significantly impact the accuracy of estimated the mass exchange rates at the boundaries of the aquifer, and it becomes critical when surface and subsurface become more tightly coupled with groundwater table within 6 to 7 meters below the surface. Inclusion of lateral subsurface flow influenced both the surface energy budget and subsurface transport processes as a result of river-water intrusion into the subsurface in response to an elevated river stage that increased soil moisture for evapotranspiration and suppressed available energy for sensible heat in the warm season. The coupled model developed in this study can be used for improving mechanistic understanding of ecosystem functioning and biogeochemical cycling along river corridors under historical and future hydroclimatic changes. The dataset presented in this study can also serve as a good benchmarking case for testing other integrated models.

More Details

Advances in Geologic Disposal System Modeling and Shale Reference Cases

Mariner, Paul; Stein, Emily; Frederick, Jennifer M.; Sevougian, Stephen D.; Hammond, Glenn E.

The Spent Fuel and Waste Science and Technology (SFWST) Campaign of the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (OFCT) is conducting research and development (R&D) on geologic disposal of spent nuclear fuel (SNF) and high level nuclear waste (HLW). Two high priorities for SFWST disposal R&D are design concept development and disposal system modeling (DOE 2011, Table 6). These priorities are directly addressed in the SFWST Generic Disposal Systems Analysis (GDSA) work package, which is charged with developing a disposal system modeling and analysis capability for evaluating disposal system performance for nuclear waste in geologic media (e.g., salt, granite, shale, and deep borehole disposal).

More Details
Results 1–50 of 152
Results 1–50 of 152