Publications

Results 26–50 of 117

Search results

Jump to search filters

Evaluation of Risk Acceptance Criteria for Transporting Hazardous Materials

Ehrhart, Brian D.; Brooks, Dusty M.; Muna, Alice B.; LaFleur, Chris B.

This report reviews and offers recommendations from Sandia National transportation of hazardous materials in the U.S. The risk criteria should be used with the results of a quantitative risk assessment (QRA) in risk acceptance decision-making. The QRA for transportation is fundamentally the same as a fixed facility. However, there are differences in calculations of both the probabilities of occurrence and location of hazards. Involuntary individual fatality risk is recommended to be acceptable for annual probabilities of less than 3 x 10-7 for any population, including vulnerable populations, and may be considered acceptable at the regulators discretion for non-sensitive/non-vulnerable populations if less than 5 x 10-5 and demonstrated to be as low as reasonably practicable (ALARP). Societal risk is recommended to be acceptable if the annual frequency of events that would result in N or more fatalities is less than 10-5/N events per year and may be considered acceptable at the regulators discretion if less than 10-3/N events per year and demonstrated to be ALARP. These criteria should be applied to the societal risk over the entire transportation route, not normalized per-distance. These values are adapted from the National Fire Protection Association (NFPA) 59A, a U.S. and international standard for liquefied natural gas (LNG) facility siting.

More Details

Hydrogen Quantitative Risk Assessment (Annual Progress Report)

Ehrhart, Brian D.; Muna, Alice B.; LaFleur, Chris B.; Glover, Austin M.; Baird, Austin R.

DOE has identified consistent safety, codes, and standards as a critical need for the deployment of hydrogen technologies, with key barriers related to the availability and implementation of technical information in the development of regulations, codes, and standards. Advances in codes and standards have been enabled by risk-informed approaches to create and implement revisions to codes, such as National Fire Protection Association (NFPA) 2, NFPA 55, and International Organization for Standardization (ISO) Technical Specification (TS)-19880-1. This project provides the technical basis for these revisions, enabling the assessment of the safety of hydrogen fuel cell systems and infrastructure using QRA and physics-based models of hydrogen behavior. The risk and behavior tools that are developed in this project are motivated by, shared directly with, and used by the committees revising relevant codes and standards, thus forming the scientific basis to ensure that code requirements are consistent, logical, and defensible.

More Details

Hydrogen Stations for Urban Sites

Ehrhart, Brian D.; Bran Anleu, Gabriela A.; Ye, Dongmei Y.; Hecht, Ethan S.; Muna, Alice B.; LaFleur, Chris B.

Additional fueling stations need to be constructed in the U.S. to enable the wide-spread adoption of fuel cell electric vehicles. A wide variety of private and public stakeholders are involved in the development of this hydrogen fueling infrastructure. Each stakeholder has particular needs in the station planning, development, and operation process that may include evaluation of potential sites and requirements, understanding the components in a typical system, and/or improving public acceptance of this technology. Publicly available templates of representative station designs can be used to meet many of these stakeholder needs. These 'Reference Stations' help reduce the cost and speed the deployment of hydrogen stations by providing a common baseline with which to start a design, enabling quick assessment of the suitability of a particular site for a hydrogen station, and identifying contributors to poor economics and research and development areas for certain station designs.

More Details

Electrical Arc Fault Particle Size Characterization

Armijo, Kenneth M.; Clem, Paul G.; Kotovsky, Daniel; Demosthenous, Byron D.; Laros, James H.; MARTINEZ, RAYMOND H.; Muna, Alice B.; LaFleur, Chris B.

In this investigation a series of small-scale tests were conducted, which were sponsored by the Nuclear Regulatory Commission (NRC) Office of Nuclear Regulatory Research (RES) and performed at Sandia National Laboratories (SNL). These tests were designed to better understand localized particle dispersion phenomena resulting from electrical arcing faults. The purpose of these tests was to better characterize aluminum particle size distribution, rates of production, and morphology (agglomeration) of electrical arc faults. More specifically, this effort characterized ejected particles and high-energy dispersion, where this work characterized HEAF electrical characteristics, particle movement/distributions, and morphology near the arc. The results and measurements techniques from this investigation will be used to inform an energy balance model to predict additional energy from aluminum involvement in the arc fault. The experimental setup was developed based on prior work by KEMA and SNL for phase-to-ground and phase-to-phase electrical circuit faults. The small-scale tests results should not be expected to be scale-able to the hazards associated with full-scale HEAF events. Here, the test voltages will consist of four different levels: 480V, 4160V, 6900V and 10kV, based on those realized in nuclear power plant (NPP) HEAF events.

More Details

A Reliability Study on the ALERTUS Emergency Management Notification System

Muna, Alice B.; LaFleur, Chris B.

Sandia National Laboratories conducted a reliability analysis on the Alertus mass notification system to determine if improvements need to be made to the system to increase reliability. The Alertus mass notification system for Building 803 was analyzed with a set number of components. The components, their associated failure modes and failure mode rates were inputted into a fault tree in the SAPHIRE software which calculated the reliability of the system to be 0.998269.

More Details

Hydrogen Quantitative Risk Assessment

Muna, Alice B.; Ehrhart, Brian D.; Hecht, Ethan S.; Bran Anleu, Gabriela A.; Blaylock, Myra L.; LaFleur, Chris B.

DOE has identified consistent safety, codes, and standards as a critical need for the deployment of hydrogen technologies, with key barriers related to the availability and implementation of technical information in the development of regulations, codes, and standards. Advances in codes and standards have been enabled by risk-informed approaches to create and implement revisions to codes, such as National Fire Protection Association (NFPA) 2, NFPA 55, and International Organization for Standardization (ISO) Technical Specification (TS)-19880-1. This project provides the technical basis for these revisions, enabling the assessment of the safety of hydrogen fuel cell systems and infrastructure using QRA and physics-based models of hydrogen behavior. The risk and behavior tools that are developed in this project are motivated by, shared directly with, and used by the committees revising relevant codes and standards, thus forming the scientific basis to ensure that code requirements are consistent, logical, and defensible.

More Details
Results 26–50 of 117
Results 26–50 of 117