Publications

56 Results

Search results

Jump to search filters

Mining experimental magnetized liner inertial fusion data: Trends in stagnation morphology

Physics of Plasmas

Foulk, James W.; Yager-Elorriaga, David A.; Jennings, Christopher A.; Fein, Jeffrey R.; Shipley, Gabriel A.; Porwitzky, Andrew J.; Awe, Thomas J.; Gomez, Matthew R.; Harding, Eric H.; Harvey-Thompson, Adam J.; Knapp, Patrick F.; Mannion, Owen M.; Ruiz, Daniel E.; Schaeuble, Marc-Andre S.; Slutz, Stephen A.; Weis, Matthew R.; Woolstrum, Jeffrey M.; Ampleford, David J.; Shulenburger, Luke N.

More Details

Three-dimensional simulations of magneto-inertial Magnetic-Direct-Drive targets

Weis, Matthew R.; Jennings, Christopher A.; Harvey-Thompson, Adam J.; Yager-Elorriaga, David A.; Fein, Jeffrey R.; Gomez, Matthew R.; Hansen, Stephanie B.; Ruiz, Daniel E.; Slutz, Stephen A.; Shulenburger, Luke N.; Ampleford, David J.

For the cylindrically symmetric targets that are normally fielded on the Z machine, two dimensional axisymmetric MHD simulations provide the backbone of our target design capability. These simulations capture the essential operation of the target and allow for a wide range of physics to be addressed at a substantially lower computational cost than 3D simulations. This approach, however, makes some approximations that may impact its ability to accurately provide insight into target operation. As an example, in 2D simulations, targets are able to stagnate directly to the axis in a way that is not entirely physical, leading to uncertainty in the impact of the dynamical instabilities that are an important source of degradation for ICF concepts. In this report, we have performed a series of 3D calculations in order to assess the importance of this higher fidelity treatment on MagLIF target performance.

More Details

Hall interchange instability as a seed for helical magneto-Rayleigh–Taylor instabilities in magnetized liner inertial fusion Z-Pinches scaled from Z-Machine parameters to a next generation pulsed power facility

Physics of Plasmas

Woolstrum, Jeffrey M.; Ruiz, Daniel E.; Hamlin, Nathaniel D.; Beckwith, Kristian; Martin, Matthew R.

Magnetized liner inertial fusion (MagLIF) is a magneto-inertial-fusion concept that is studied on the 20-MA, 100-ns rise time Z Pulsed Power Facility at Sandia National Laboratories. Given the relative success of the platform, there is a wide interest in studying the scaled performance of this concept at a next-generation pulsed-power facility that may produce peak currents upward of 60 MA. An important aspect that requires more research is the instability dynamics of the imploding MagLIF liner, specifically how instabilities are initially seeded. It has been shown in magnetized 1-MA thin-foil liner Z-pinch implosion simulations that a Hall interchange instability (HII) effect can provide an independent seeding mechanism for helical magneto-Rayleigh–Taylor instabilities. Here in this paper, we explore this instability at higher peak currents for MagLIF using 2D discontinuous Galerkin PERSEUS simulations, an extended magneto-hydrodynamics code, which includes Hall physics. Our simulations of scaled MagLIF loads show that the growth rate of the HII is invariant to the peak current, suggesting that studies at 20-MA are directly relevant to 60-MA class machines.

More Details

Hall interchange instability as a seed for helical magneto-Rayleigh-Taylor instabilities in magnetized liner inertial fusion Z-Pinches scaled from Z-Machine parameters to a next generation pulsed power facility

Physics of Plasmas

Woolstrum, Jeffrey M.; Ruiz, Daniel E.; Hamlin, Nathaniel D.; Beckwith, Kristian; Martin, Matthew R.

Magnetized liner inertial fusion (MagLIF) is a magneto-inertial-fusion concept that is studied on the 20-MA, 100-ns rise time Z Pulsed Power Facility at Sandia National Laboratories. Given the relative success of the platform, there is a wide interest in studying the scaled performance of this concept at a next-generation pulsed-power facility that may produce peak currents upward of 60 MA. An important aspect that requires more research is the instability dynamics of the imploding MagLIF liner, specifically how instabilities are initially seeded. It has been shown in magnetized 1-MA thin-foil liner Z-pinch implosion simulations that a Hall interchange instability (HII) effect [J. M. Woolstrum et al., Phys. Plasmas 29, 122701 (2022)] can provide an independent seeding mechanism for helical magneto-Rayleigh-Taylor instabilities. In this paper, we explore this instability at higher peak currents for MagLIF using 2D discontinuous Galerkin PERSEUS simulations, an extended magneto-hydrodynamics code [C. E. Seyler and M. R. Martin, Phys. Plasmas 18, 012703 (2011)], which includes Hall physics. Our simulations of scaled MagLIF loads show that the growth rate of the HII is invariant to the peak current, suggesting that studies at 20-MA are directly relevant to 60-MA class machines.

More Details

Data-driven assessment of magnetic charged particle confinement parameter scaling in magnetized liner inertial fusion experiments on Z

Physics of Plasmas

Foulk, James W.; Mannion, Owen M.; Ruiz, Daniel E.; Jennings, Christopher A.; Knapp, P.F.; Gomez, Matthew R.; Harvey-Thompson, Adam J.; Weis, Matthew R.; Slutz, Stephen A.; Ampleford, David J.; Beckwith, Kristian

In magneto-inertial fusion, the ratio of the characteristic fuel length perpendicular to the applied magnetic field R to the α-particle Larmor radius Q α is a critical parameter setting the scale of electron thermal-conduction loss and charged burn-product confinement. Using a previously developed deep-learning-based Bayesian inference tool, we obtain the magnetic-field fuel-radius product B R ∝ R / Q α from an ensemble of 16 magnetized liner inertial fusion (MagLIF) experiments. Observations of the trends in BR are consistent with relative trade-offs between compression and flux loss as well as the impact of mix from 1D resistive radiation magneto-hydrodynamics simulations in all but two experiments, for which 3D effects are hypothesized to play a significant role. Finally, we explain the relationship between BR and the generalized Lawson parameter χ. Our results indicate the ability to improve performance in MagLIF through careful tuning of experimental inputs, while also highlighting key risks from mix and 3D effects that must be mitigated in scaling MagLIF to higher currents with a next-generation driver.

More Details

Demonstration of improved laser preheat with a cryogenically cooled magnetized liner inertial fusion platform

Review of Scientific Instruments

Harvey-Thompson, Adam J.; Geissel, Matthias; Crabtree, J.A.; Weis, Matthew R.; Gomez, Matthew R.; Fein, Jeffrey R.; Foulk, James W.; Ampleford, David J.; Awe, Thomas J.; Chandler, Gordon A.; Hansen, Stephanie B.; Jennings, Christopher A.; Knapp, P.F.; Kimmel, Mark; Mangan, Michael A.; Peterson, K.J.; Porter, John L.; Rochau, G.A.; Ruiz, Daniel E.; Hanson, J.; Harding, Eric H.; Perea, L.; Robertson, G.K.; Shores, Jonathon; Slutz, Stephen A.; Smith, G.E.; Speas, Christopher S.; Yager-Elorriaga, David A.; York, A.

We report on progress implementing and testing cryogenically cooled platforms for Magnetized Liner Inertial Fusion (MagLIF) experiments. Two cryogenically cooled experimental platforms were developed: an integrated platform fielded on the Z pulsed power generator that combines magnetization, laser preheat, and pulsed-power-driven fuel compression and a laser-only platform in a separate chamber that enables measurements of the laser preheat energy using shadowgraphy measurements. The laser-only experiments suggest that ∼89% ± 10% of the incident energy is coupled to the fuel in cooled targets across the energy range tested, significantly higher than previous warm experiments that achieved at most 67% coupling and in line with simulation predictions. The laser preheat configuration was applied to a cryogenically cooled integrated experiment that used a novel cryostat configuration that cooled the MagLIF liner from both ends. The integrated experiment, z3576, coupled 2.32 ± 0.25 kJ preheat energy to the fuel, the highest to-date, demonstrated excellent temperature control and nominal current delivery, and produced one of the highest pressure stagnations as determined by a Bayesian analysis of the data.

More Details

On the specificity between mapping of initial and final states of the magneto Rayleigh-Taylor instability

Foulk, James W.; Ruiz, Daniel E.; Broeren, Theodore

In this LDRD we investigated the application of machine learning methods to understand dimensionality reduction and evolution of the Rayleigh-Taylor instability (RTI). As part of the project, we undertook a significant literature review to understand current analytical theory and machine learning based methods to treat evolution of this instability. We note that we chose to refocus on assessing the hydrodynamic RTI as opposed to the magneto-Rayleigh-Taylor instability originally proposed. This choice enabled utilizing a wealth of analytic test cases and working with relatively fast running open-source simulations of single-mode RTI. This greatly facilitated external collaboration with URA summer fellowship student, Theodore Broeren. In this project we studied the application of methods from dynamical systems learning and traditional regression methods to recover behavior of RTI ranging from the fully nonlinear to weakly nonlinear (wNL) regimes. Here we report on two of the tested methods SINDy and a more traditional regression-based approach inspired by analytic wNL theory with which we had the most success. We conclude with a discussion of potential future extensions to this work that may improve our understanding from both theoretical and phenomenological perspectives.

More Details

Harmonic Generation and Inverse Cascade in the z-Pinch Driven, Preseeded Multimode, Magneto-Rayleigh-Taylor Instability

Physical Review Letters

Ruiz, Daniel E.; Yager-Elorriaga, David A.; Peterson, K.J.; Sinars, Daniel; Weis, Matthew R.; Schroen, D.G.; Tomlinson, K.; Fein, Jeffrey R.; Beckwith, Kristian

The magneto-Rayleigh-Taylor instability (MRTI) plays an essential role in astrophysical systems and in magneto-inertial fusion, where it is known to be an important degradation mechanism of confinement and target performance. In this Letter, we show for the first time experimental evidence of mode mixing and the onset of an inverse-cascade process resulting from the nonlinear coupling of two discrete preseeded axial modes (400- and 550-μm wavelengths) on an Al liner that is magnetically imploded using the 20-MA, 100-ns rise-time Z Machine at Sandia National Laboratories. Four radiographs captured the temporal evolution of the MRTI. We introduce a novel unfold technique to analyze the experimental radiographs and compare the results to simulations and to a weakly nonlinear model. We find good quantitative agreement with simulations using the radiation magnetohydrodynamics code hydra. Spectral analysis of the MRTI time evolution obtained from the simulations shows evidence of harmonic generation, mode coupling, and the onset of an inverse-cascade process. The experiments provide a benchmark for future work on the MRTI and motivate the development of new analytical theories to better understand this instability.

More Details

Studying the Richtmyer–Meshkov instability in convergent geometry under high energy density conditions using the Decel platform

Physics of Plasmas

Yager-Elorriaga, David A.; Doss, Forrest W.; Shipley, Gabriel A.; Ruiz, Daniel E.; Porwitzky, Andrew J.; Fein, Jeffrey R.; Merritt, Elizabeth C.; Martin, Matthew R.; Myers, Clayton; Jennings, Christopher A.; Marshall, Dustin J.; Shulenburger, Luke N.

The “Decel” platform at Sandia National Laboratories investigates the Richtmyer–Meshkov instability (RMI) in converging geometry under high energy density conditions [Knapp et al., Phys. Plasmas 27, 092707 (2020)]. In Decel, the Z machine magnetically implodes a cylindrical beryllium liner filled with liquid deuterium, launching a converging shock toward an on-axis beryllium rod machined with sinusoidal perturbations. The passage of the shock deposits vorticity along the Be/D2 interface, causing the perturbations to grow. Here, we present platform improvements along with recent experimental results. To improve the stability of the imploding liner to the magneto Rayleigh–Taylor instability, we modified its acceleration history by shortening the Z electrical current pulse. Next, we introduce a “split rod” configuration that allows two axial modes to be fielded simultaneously in different axial locations along the rod, doubling our data per experiment. We then demonstrate that asymmetric slots in the return current structure modify the magnetic drive pressure on the surface of the liner, advancing the evolution on one side of the rod by multiple ns compared to its 180° counterpart. This effectively enables two snapshots of the instability at different stages of evolution per radiograph with small deviations of the cross-sectional profile of the rod from the circular. Using this platform, we acquired RMI data at 272 and 157 μm wavelengths during the single shock stage. Finally, we demonstrate the utility of these data for benchmarking simulations by comparing calculations using ALEGRA MHD and RageRunner.

More Details

Estimation of stagnation performance metrics in magnetized liner inertial fusion experiments using Bayesian data assimilation

Physics of Plasmas

Knapp, P.F.; Glinsky, Michael E.; Schaeuble, Marc-Andre S.; Jennings, Christopher A.; Evans, Matthew; Gunning, James; Awe, Thomas J.; Chandler, Gordon A.; Geissel, Matthias; Gomez, Matthew R.; Hahn, Kelly D.; Hansen, Stephanie B.; Harding, Eric H.; Harvey-Thompson, Adam J.; Humane, Shailja; Klein, Brandon; Mangan, Michael A.; Nagayama, Taisuke; Porwitzky, Andrew J.; Ruiz, Daniel E.; Schmit, Paul F.; Slutz, Stephen A.; Smith, Ian C.; Weis, Matthew R.; Yager-Elorriaga, David A.; Ampleford, David J.; Beckwith, Kristian; Mattsson, Thomas; Peterson, K.J.; Sinars, Daniel

Here we present a new analysis methodology that allows for the self-consistent integration of multiple diagnostics including nuclear measurements, x-ray imaging, and x-ray power detectors to determine the primary stagnation parameters, such as temperature, pressure, stagnation volume, and mix fraction in magnetized liner inertial fusion (MagLIF) experiments. The analysis uses a simplified model of the stagnation plasma in conjunction with a Bayesian inference framework to determine the most probable configuration that describes the experimental observations while simultaneously revealing the principal uncertainties in the analysis. We validate the approach by using a range of tests including analytic and three-dimensional MHD models. An ensemble of MagLIF experiments is analyzed, and the generalized Lawson criterion χ is estimated for all experiments.

More Details

An overview of magneto-inertial fusion on the Z Machine at Sandia National Laboratories

Nuclear Fusion

Yager-Elorriaga, David A.; Ruiz, Daniel E.; Slutz, Stephen A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Weis, Matthew R.; Weisy; Awe, Thomas J.; Chandler, Gordon A.; Myers, Clayton; Fein, Jeffrey R.; Galloway, Benjamin R.; Geissel, Matthias; Glinsky, Michael E.; Hansen, Stephanie B.; Harding, Eric H.; Lamppa, Derek C.; Foulk, James W.; Rambo, Patrick K.; Robertson, G.K.; Savage, Mark E.; Shipley, Gabriel A.; Schwarz, Jens; Ampleford, David J.; Beckwith, Kristian; Peterson, K.J.; Porter, John L.; Rochau, G.A.

We present an overview of the magneto-inertial fusion (MIF) concept MagLIF (Magnetized Liner Inertial Fusion) pursued at Sandia National Laboratories and review some of the most prominent results since the initial experiments in 2013. In MagLIF, a centimeter-scale beryllium tube or "liner" is filled with a fusion fuel, axially pre-magnetized, laser pre-heated, and finally imploded using up to 20 MA from the Z machine. All of these elements are necessary to generate a thermonuclear plasma: laser preheating raises the initial temperature of the fuel, the electrical current implodes the liner and quasi-adiabatically compresses the fuel via the Lorentz force, and the axial magnetic field limits thermal conduction from the hot plasma to the cold liner walls during the implosion. MagLIF is the first MIF concept to demonstrate fusion relevant temperatures, significant fusion production (>10^13 primary DD neutron yield), and magnetic trapping of charged fusion particles. On a 60 MA next-generation pulsed-power machine, two-dimensional simulations suggest that MagLIF has the potential to generate multi-MJ yields with significant self-heating, a long-term goal of the US Stockpile Stewardship Program. At currents exceeding 65 MA, the high gains required for fusion energy could be achievable.

More Details

Developing a platform to enable parameter scaling studies in Magnetized Liner Inertial Fusion experiments

Gomez, Matthew R.; Slutz, Stephen A.; Jennings, Christopher A.; Weis, Matthew R.; Lamppa, Derek C.; Harvey-Thompson, Adam J.; Geissel, Matthias; Awe, Thomas J.; Chandler, Gordon A.; Crabtree, J.A.; Fein, Jeffrey R.; Hansen, Stephanie B.; Harding, Eric H.; Foulk, James W.; Mangan, Michael A.; Ruiz, Daniel E.; Smith, Ian C.; Yager-Elorriaga, David A.; Ampleford, David J.; Beckwith, Kristian

Abstract not provided.

Increased preheat energy to MagLIF targets with cryogenic cooling

Harvey-Thompson, Adam J.; Geissel, Matthias; Crabtree, J.A.; Weis, Matthew R.; Gomez, Matthew R.; Fein, Jeffrey R.; Ampleford, David J.; Awe, Thomas J.; Chandler, Gordon A.; Galloway, Benjamin R.; Hansen, Stephanie B.; Hanson, Jeffrey; Harding, Eric H.; Jennings, Christopher A.; Kimmel, Mark; Knapp, P.F.; Lamppa, Derek C.; Foulk, James W.; Mangan, Michael A.; Maurer, Andrew J.; Perea, Lawrence; Peterson, Kara J.; Porter, John L.; Rambo, Patrick K.; Robertson, G.K.; Rochau, G.A.; Ruiz, Daniel E.; Shores, Jonathon; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Yager-Elorriaga, David A.; York, A.; Paguio, R.R.; Smith, G.E.

Abstract not provided.

An overview of magneto-inertial fusion on the Z Machine at Sandia National Laboratories

Yager-Elorriaga, David A.; Gomez, Matthew R.; Ruiz, Daniel E.; Slutz, Stephen A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Weis, Matthew R.; Awe, Thomas J.; Chandler, Gordon A.; Myers, Clayton; Fein, Jeffrey R.; Geissel, Matthias; Glinsky, Michael E.; Hansen, Stephanie B.; Harding, Eric H.; Lamppa, Derek C.; Foulk, James W.; Robertson, G.K.; Savage, Mark E.; Ampleford, David J.; Beckwith, Kristian; Peterson, K.J.; Porter, John L.; Rochau, G.A.

Abstract not provided.

An overview of magneto-inertial fusion on the Z Machine at Sandia National Laboratories

Yager-Elorriaga, David A.; Gomez, Matthew R.; Ruiz, Daniel E.; Slutz, Stephen A.; Harvey-Thompson, Adam J.; Jennings, Christopher A.; Knapp, P.F.; Schmit, Paul; Weis, Matthew R.; Awe, Thomas J.; Chandler, Gordon A.; Mangan, Michael A.; Myers, Clayton; Fein, Jeffrey R.; Geissel, Matthias; Glinsky, Michael E.; Hansen, Stephanie B.; Harding, Eric H.; Lamppa, Derek C.; Webster, Evelyn; Rambo, Patrick K.; Robertson, G.K.; Savage, Mark E.; Smith, Ian C.; Ampleford, David J.; Beckwith, Kristian; Peterson, Kara J.; Porter, John L.; Rochau, G.A.; Sinars, Daniel

Abstract not provided.

Scaling laser preheat for MagLIF with the Z-Beamlet laser

Physics of Plasmas

Weis, Matthew R.; Harvey-Thompson, Adam J.; Ruiz, Daniel E.

Optimizing the performance of the Magnetized Liner Inertial Fusion (MagLIF) platform on the Z pulsed power facility requires coupling greater than 2 kJ of preheat energy to an underdense fuel in the presence of an applied axial magnetic field ranging from 10 to 30 T. Achieving the suggested optimal preheat energies has not been experimentally achieved so far. In this work, we explore the preheat design space for cryogenically cooled MagLIF targets, which represent a viable candidate for increasing preheat energies. Using 2D and 3D HYDRA MHD simulations, we first discuss the various physical effects that occur during laser preheat, such as laser energy deposition, self-focusing, and filamentation. After identifying the changes that different phase plates, gas-fill densities, and magnetic fields bring to the aforementioned physical effects, we, then, consider higher laser energies that are achievable with modest upgrades to the Z Beamlet laser. Lastly, with a 6.0-kJ upgraded laser, 3D calculations suggest that it is possible to deliver 4.25 kJ into the MagLIF fuel, resulting in an expected deuterium neutron yield of YDD ≃ 1.5 × 1014, or roughly 50 kJ of DT equivalent yield, at 20-MA current drive. This represents a 10-fold increase in the currently achieved yields for MagLIF.

More Details

The effect of laser entrance hole foil thickness on MagLIF-relevant laser preheat

Physics of Plasmas

Harvey-Thompson, Adam J.; Weis, Matthew R.; Ruiz, Daniel E.; Wei, M.S.; Sefkow, A.B.; Nagayama, Taisuke; Campbell, E.M.; Fooks, J.A.; Glinsky, Michael E.; Peterson, K.J.

The magnetized liner inertial fusion (MagLIF) scheme relies on coupling laser energy into an underdense fuel raising the fuel adiabat at the start of the implosion. To deposit energy into the fuel, the laser must first penetrate a laser entrance hole (LEH) foil which can be a significant energy sink and introduce mix. In this paper, we report on experiments investigating laser energy coupling into MagLIF-relevant gas cell targets with LEH foil thicknesses varying from 0.5 μm to 3 μm. Two-dimensional (2D) axisymmetric simulations match the experimental results well for 0.5 μm and 1 μm thick LEH foils but exhibit whole-beam self-focusing and excessive penetration of the laser into the gas for 2 μm and 3 μm thick LEH foils. Better agreement for the 2 μm-thick foil is found when using a different thermal conductivity model in 2D simulations, while only 3D Cartesian simulations come close to matching the 3 μm-thick foil experiments. The study suggests that simulations may over-predict the tendency for the laser to self-focus during MagLIF preheat when thicker LEH foils are used. This effect is pronounced with 2D simulations where the azimuthally symmetric density channel effectively self-focuses the rays that are forced to traverse the center of the plasma. The extra degree of freedom in 3D simulations significantly reduces this effect. The experiments and simulations also suggest that, in this study, the amount of energy coupled into the gas is highly correlated with the laser propagation length regardless of the LEH foil thickness.

More Details

Performance Scaling in Magnetized Liner Inertial Fusion Experiments

Physical Review Letters

Gomez, Matthew R.; Slutz, Stephen A.; Jennings, Christopher A.; Ampleford, David J.; Weis, Matthew R.; Myers, Clayton; Yager-Elorriaga, David A.; Hahn, K.D.; Hansen, Stephanie B.; Harding, Eric H.; Harvey-Thompson, Adam J.; Lamppa, Derek C.; Mangan, Michael A.; Knapp, P.F.; Awe, Thomas J.; Chandler, Gordon A.; Cooper, Gary; Fein, Jeffrey R.; Geissel, Matthias; Glinsky, Michael E.; Foulk, James W.; Ruiz, C.L.; Ruiz, Daniel E.; Savage, Mark E.; Schmit, Paul; Smith, Ian C.; Styron, J.D.; Porter, John L.; Jones, Brent M.; Mattsson, Thomas; Peterson, K.J.; Rochau, G.A.; Sinars, Daniel

We present experimental results from the first systematic study of performance scaling with drive parameters for a magnetoinertial fusion concept. In magnetized liner inertial fusion experiments, the burn-averaged ion temperature doubles to 3.1 keV and the primary deuterium-deuterium neutron yield increases by more than an order of magnitude to 1.1×1013 (2 kJ deuterium-tritium equivalent) through a simultaneous increase in the applied magnetic field (from 10.4 to 15.9 T), laser preheat energy (from 0.46 to 1.2 kJ), and current coupling (from 16 to 20 MA). Individual parametric scans of the initial magnetic field and laser preheat energy show the expected trends, demonstrating the importance of magnetic insulation and the impact of the Nernst effect for this concept. A drive-current scan shows that present experiments operate close to the point where implosion stability is a limiting factor in performance, demonstrating the need to raise fuel pressure as drive current is increased. Simulations that capture these experimental trends indicate that another order of magnitude increase in yield on the Z facility is possible with additional increases of input parameters.

More Details

Theoretical study of various nonlinear phenomena in plasma systems and scaling of magneto-inertial-fusion targets

Ruiz, Daniel E.

Plasma physics is an exciting field of study with a wide variety of nonlinear processes that come into play. Examples of such processes include the interaction of small-scale turbulence with large-scale plasma structures and the nonlinear saturation of plasma instabilities, for example those of magneto-hydrodynamical nature. During this Truman LDRD project, I studied a collection of nonlinear problems that are of interest to the field of plasma physics. This LDRD report summarizes four main research accomplishments. First, a new statistical model for describing inhomogeneous drift-wave turbulence inter- acting with zonal flows was developed. This new model includes the effects of nonlinear wave-wave collisions, which are expected to change the spectrum of the underlying DW turbulence and therefore the generation of zonal flows. Second, a new mathematical formalism was proposed to systematically apply the non- linear WKB approximation to general field theories, including those often used in fluid dynamics. This formalism represents an interesting tool for studying physical systems that show an explicit scale separation. Third, a weakly nonlinear model was developed to describe the magneto-Rayleigh-Taylor instability. This instability is of paramount importance to understand as it can reduce the performance of magnetic-inertial-fusion (MIF) platforms. The developed models captures the effects of harmonic generation and saturation of the linear growth of the instability. Finally, a framework was proposed for scaling magneto-inertial fusion (MIF) targets to larger pulsed-power drivers. From this framework, a set of scaling rules were derived that conserve the physical regimes of MIF systems when scaling up in peak current. By doing so, deleterious nonlinear processes that affect MIF performance may be kept at bay.

More Details

Update on MagLIF preheat experiments

Harvey-Thompson, Adam J.; Geissel, Matthias; Weis, Matthew R.; Galloway, Benjamin R.; Fein, Jeffrey R.; Awe, Thomas J.; Crabtree, J.A.; Ampleford, David J.; Bliss, David E.; Glinsky, Michael E.; Gomez, Matthew R.; Hanson, J.; Harding, Eric H.; Jennings, Christopher A.; Kimmel, Mark; Perea, Lawrence; Peterson, K.J.; Porter, James D.; Rambo, Patrick K.; Robertson, G.K.; Ruiz, Daniel E.; Schwarz, Jens; Shores, Jonathon; Slutz, Stephen A.; Smith, Ian C.; York, A.; Paguio, R.R.; Smith, G.E.; Maudlin, M.; Pollock, B.

Abstract not provided.

A conservative approach to scaling magneto-inertial fusion concepts to larger pulsed-power drivers

Physics of Plasmas

Schmit, Paul; Ruiz, Daniel E.

The Magnetized Liner Inertial Fusion (MagLIF) experimental platform [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] represents the most successful demonstration of magneto-inertial fusion (MIF) techniques to date in pursuit of ignition and significant fusion yields. The pressing question remains regarding how to scale MIF concepts like MagLIF to more powerful pulsed-power drivers while avoiding significant changes in physical regimes that could adversely impact performance. In this work, we propose a conservative approach for scaling general MIF implosions, including MagLIF. Underpinning our scaling approach is a theoretical framework describing the evolution of the trajectory and thickness of a thin-walled, cylindrical, current-driven shell imploding on preheated, adiabatic fuel. By imposing that scaled implosions remain self-similar, we obtain a set of scaling rules expressing key target design parameters and performance metrics as functions of the maximum driver current I max. We identify several scaling paths offering unique, complementary benefits and trade-offs in terms of physics risks and driver requirements. Remarkably, when scaling present-day experiments to higher coupled energies, these paths are predicted to preserve or reduce the majority of known performance-degrading effects, including hydrodynamic instabilities, impurity mix, fuel energy losses, and laser-plasma interactions, with notable exceptions clearly delineated. In the absence of α heating, our scaling paths exhibit neutron yield per-unit-length scaling as Y ? [I max 3, I max 4.14] and ignition parameter scaling as χ ? [I max, I max 2.14]. By considering the specific physics risks unique to each scaling path, we provide a roadmap for future investigations to evaluate different scaling options through detailed numerical studies and scaling-focused experiments on present-day facilities. Overall, these results highlight the potential of MIF as a key component of the national ignition effort.

More Details

Variational nonlinear WKB in the Eulerian frame

Journal of Mathematical Physics

Burby, J.W.; Ruiz, Daniel E.

Nonlinear WKB is a multiscale technique for studying locally plane-wave solutions of nonlinear partial differential equations (PDEs). Its application comprises two steps: (1) replacement of the original PDE with an extended system separating the large scales from the small and (2) reduction of the extended system to its slow manifold. In the context of variational fluid theories with particle relabeling symmetry, nonlinear WKB in the mean Eulerian frame is known to possess a variational structure. This much has been demonstrated using, for instance, the theoretical apparatus known as the generalized Lagrangian mean. On the other hand, the variational structure of nonlinear WKB in the conventional Eulerian frame remains mysterious. By exhibiting a variational principle for the extended equations from step (1) above, we demonstrate that nonlinear WKB in the Eulerian frame is in fact variational. Remarkably, the variational principle for the extended system admits loops of relabeling transformations as a symmetry group. Noether's theorem therefore implies that the extended Eulerian equations possess a family of circulation invariants parameterized by S1. As an illustrative example, we use our results to systematically deduce a variational model of high-frequency acoustic waves interacting with a larger-scale compressible isothermal flow.

More Details

On a variational formulation of the weakly nonlinear magnetic Rayleigh-Taylor instability

Physics of Plasmas

Ruiz, Daniel E.

The magnetic-Rayleigh-Taylor (MRT) instability is a ubiquitous phenomenon that occurs in magnetically-driven Z-pinch implosions. It is important to understand this instability since it can decrease the performance of such implosions. In this work, I present a theoretical model for the weakly nonlinear MRT instability. I obtain such a model by asymptotically expanding an action principle, whose Lagrangian leads to the fully nonlinear MRT equations. After introducing a suitable choice of coordinates, I show that the theory can be cast as a Hamiltonian system, whose Hamiltonian is calculated up to the sixth order in a perturbation parameter. The resulting theory captures the harmonic generation of MRT modes. It is shown that the amplitude at which the linear magnetic-Rayleigh-Taylor instability exponential growth saturates depends on the stabilization effect of the magnetic-field tension. Overall, the theory provides an intuitive interpretation of the weakly nonlinear MRT instability and provides a systematic approach for studying this instability in more complex settings.

More Details

The Impact on Mix of Different Preheat Protocols

Harvey-Thompson, Adam J.; Geissel, Matthias; Jennings, Christopher A.; Weis, Matthew R.; Ampleford, David J.; Bliss, David E.; Chandler, Gordon A.; Fein, Jeffrey R.; Galloway, Benjamin R.; Glinsky, Michael E.; Gomez, Matthew R.; Hahn, K.D.; Hansen, Stephanie B.; Harding, Eric H.; Kimmel, Mark; Knapp, P.F.; Perea, Lawrence; Peterson, Kara J.; Porter, John L.; Rambo, Patrick K.; Robertson, G.K.; Rochau, G.A.; Ruiz, Daniel E.; Schwarz, Jens; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Whittemore, Kelly A.; Woodbury, Daniel; Smith, G.E.

Abstract not provided.

Progress in Implementing High-Energy Low-Mix Laser Preheat for MagLIF

Harvey-Thompson, Adam J.; Geissel, Matthias; Jennings, Christopher A.; Weis, Matthew R.; Ampleford, David J.; Bliss, David E.; Chandler, Gordon A.; Fein, Jeffrey R.; Galloway, Benjamin R.; Glinsky, Michael E.; Gomez, Matthew R.; Hahn, K.D.; Hansen, Stephanie B.; Harding, Eric H.; Kimmel, Mark; Knapp, P.F.; Perea, Lawrence; Peterson, Kara J.; Porter, John L.; Rambo, Patrick K.; Robertson, G.K.; Rochau, G.A.; Ruiz, Daniel E.; Schwarz, Jens; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher S.; Whittemore, Kelly A.; Woodbury, Daniel; Smith, G.E.

Abstract not provided.

Quasioptical modeling of wave beams with and without mode conversion. I. Basic theory

Physics of Plasmas

Dodin, I.Y.; Ruiz, Daniel E.; Yanagihara, K.; Zhou, Y.; Kubo, S.

This work opens a series of papers where we develop a general quasi-optical theory for mode-converting electromagnetic beams in plasma and implement it in a numerical algorithm. Here, the basic theory is introduced. We consider a general quasimonochromatic multicomponent wave in a weakly inhomogeneous linear medium with no sources. For any given dispersion operator that governs the wave field, we explicitly calculate the approximate operator that governs the wave envelope ψ to the second order in the geometrical-optics parameter. Then, we further simplify this envelope operator by assuming that the gradient of ψ transverse to the local group velocity is much larger than the corresponding parallel gradient. This leads to a parabolic differential equation for ψ ("quasioptical equation") on the basis of the geometrical-optics polarization vectors. Scalar and mode-converting vector beams are described on the same footing. We also explain how to apply this model to electromagnetic waves in general. In the next papers of this series, we report successful quasioptical modeling of radio frequency wave beams in magnetized plasma based on this theory.

More Details

Quasioptical modeling of wave beams with and without mode conversion. I. Basic theory

Physics of Plasmas

Dodin, I.Y.; Ruiz, Daniel E.; Yanagihara, K.; Zhou, Y.; Kubo, S.

This work opens a series of papers where we develop a general quasi-optical theory for mode-converting electromagnetic beams in plasma and implement it in a numerical algorithm. Here, the basic theory is introduced. We consider a general quasimonochromatic multicomponent wave in a weakly inhomogeneous linear medium with no sources. For any given dispersion operator that governs the wave field, we explicitly calculate the approximate operator that governs the wave envelope ψ to the second order in the geometrical-optics parameter. Then, we further simplify this envelope operator by assuming that the gradient of ψ transverse to the local group velocity is much larger than the corresponding parallel gradient. This leads to a parabolic differential equation for ψ ("quasioptical equation") on the basis of the geometrical-optics polarization vectors. Scalar and mode-converting vector beams are described on the same footing. We also explain how to apply this model to electromagnetic waves in general. In the next papers of this series, we report successful quasioptical modeling of radio frequency wave beams in magnetized plasma based on this theory.

More Details

Wave kinetic equation for inhomogeneous drift-wave turbulence beyond the quasilinear approximation

Journal of Plasma Physics

Ruiz, Daniel E.; Glinsky, Michael E.; Dodin, Ilya Y.

Here, the formation of zonal flows from inhomogeneous drift-wave (DW) turbulence is often described using statistical theories derived within the quasilinear approximation. However, this approximation neglects wave–wave collisions. Hence, some important effects such as the Batchelor–Kraichnan inverse-energy cascade are not captured within this approach. Here we derive a wave kinetic equation that includes a DW collision operator in the presence of zonal flows. Our derivation makes use of the Weyl calculus, the quasinormal statistical closure and the geometrical-optics approximation. The obtained model conserves both the total enstrophy and energy of the system. The derived DW collision operator breaks down at the Rayleigh–Kuo threshold. This threshold is missed by homogeneous-turbulence theory but expected from a full-wave quasilinear analysis. In the future, this theory might help better understand the interactions between drift waves and zonal flows, including the validity domain of the quasilinear approximation that is commonly used in the literature.

More Details

Diagnosing and mitigating laser preheat induced mix in MagLIF

Physics of Plasmas

Harvey-Thompson, Adam J.; Weis, Matthew R.; Harding, Eric H.; Geissel, Matthias; Ampleford, David J.; Chandler, Gordon A.; Fein, Jeffrey R.; Glinsky, Michael E.; Gomez, Matthew R.; Hahn, K.D.; Hansen, Stephanie B.; Jennings, Christopher A.; Knapp, P.F.; Paguio, R.R.; Perea, Lawrence; Peterson, K.J.; Porter, John L.; Rambo, Patrick K.; Robertson, G.K.; Rochau, G.A.; Ruiz, Daniel E.; Schwarz, Jens; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, G.E.; Smith, Ian C.; Speas, Christopher S.; Whittemore, Kelly A.

A series of Magnetized Liner Inertial Fusion (MagLIF) experiments have been conducted in order to investigate the mix introduced from various target surfaces during the laser preheat stage. The material mixing was measured spectroscopically for a variety of preheat protocols by employing mid-atomic number surface coatings applied to different regions of the MagLIF target. The data show that the material from the top cushion region of the target can be mixed into the fuel during preheat. For some preheat protocols, our experiments show that the laser-entrance-hole (LEH) foil used to contain the fuel can be transported into the fuel a significant fraction of the stagnation length and degrade the target performance. Preheat protocols using pulse shapes of a few-ns duration result in the observable LEH foil mix both with and without phase-plate beam smoothing. In order to reduce this material mixing, a new capability was developed to allow for a low energy (∼20 J) laser pre-pulse to be delivered early in time (-20 ns) before the main laser pulse (∼1.5 kJ). In experiments, this preheat protocol showed no indications of the LEH foil mix. The experimental results are broadly in agreement with pre-shot two-dimensional HYDRA simulations that helped motivate the development of the early pre-pulse capability.

More Details

Uncovering signatures of preheat performance in MagLIF experiments using stimulated Raman and Brillouin backscatter spectra

Fein, Jeffrey R.; Bliss, David E.; Geissel, Matthias; Harvey-Thompson, Adam J.; Awe, Thomas J.; Ampleford, David J.; Glinsky, Michael E.; Foulk, James W.; Harding, Eric H.; Macrunnels, Keven A.; Patel, Sonal G.; Ruiz, Daniel E.; Scoglietti, Daniel J.; Smith, Ian C.; Weis, Matthew R.; Peterson, Kara J.

Abstract not provided.

Pushing Laser Pre-Heat in MagLIF

Geissel, Matthias; Harvey-Thompson, Adam J.; Fein, Jeffrey R.; Woodbury, Daniel; Davis, Daniel R.; Bliss, David E.; Scoglietti, Daniel J.; Gomez, Matthew R.; Ampleford, David J.; Awe, Thomas J.; Colombo, Anthony; Weis, Matthew R.; Jennings, Christopher A.; Glinsky, Michael E.; Slutz, Stephen A.; Ruiz, Daniel E.; Peterson, K.J.; Smith, Ian C.; Shores, Jonathon; Kimmel, Mark; Rambo, Patrick K.; Schwarz, Jens; Galloway, Benjamin R.; Speas, Christopher S.; Porter, John L.

Abstract not provided.

56 Results
56 Results